您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 《数学史》周髀算经》与《九章算术》
日照东方—古代与中世纪的东方数学一、中国传统数学二、印度数学三、阿拉伯数学四、中国与印度、阿拉伯的数学交流第三章中世纪的中国数学希腊几何的演绎精神,随着希腊文明的衰微而在整个中世纪的欧洲湮没不彰。数学史上继希腊几何兴盛时期之后是一个漫长的东方时期。中世纪(公元5-17世纪)数学的主角,是中国、印度与阿拉伯地区的数学。与希腊数学相比,中世纪的东方数学表现出强烈的算法精神,特别是中国与印度数学,着重算法的概括,不讲究命题的数学推导。就繁荣时期而言,中国数学在上述三个地区是延续最长的。从公元前后至公元14世纪,先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期以及宋元时期,其中宋元时期达到了中国古典数学的顶峰。3.1《周髀算经》与《九章算术》3.1.1古代背景第一章中已涉及了中国远古数与形概念的萌芽。殷商甲骨文中已经使用完整的十进制记数。至迟到春秋战国时代,又开始出现严格的十进位值制筹算记数。《孙子算经》中记载的筹算记数法则说:“凡算之法,先识其位。一纵十横,百立千僵。千十相望,百万相当”。纵式用来表示个位、百位、万位,……数字;横式用来表示十位、千位、十万位、……数字。纵、横相间,零则以空位表示。这样,数76031用算筹表示出来是。这种十进位值记数法是中国古代数学对人类文明的特殊贡献。关于几何学,《史记》“夏本纪”记载说:夏禹治水,“左规矩,右准绳”。“规”是圆规,“矩”是直尺,“准绳”则是确定铅垂方向的器械。中国古代数学的萌芽社会历史背景条件相对封闭的疆域大河背景下的农耕文化集中的王权中国数学的特点形成了以计算为核心的算法理论具有浓郁应用色彩中国数学的成就第一部数学著作《九章算术》(大约公元前200年左右)公元3世纪至13世纪,创造了许多领先于其它民族的众多数学成果,形成国家数学教育的体制中国古代数学的萌芽中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。中国古代数学的萌芽西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。商代(又称殷代,约公元前17世纪~约前11世纪):1899年在河南安阳发掘出来的殷墟龟甲和兽骨上所刻的象形文字(甲骨文,公元前14世纪)。自然数的记法:10进位制,最大的数字是3万。中国古代数学的萌芽与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。太极八卦图“易有太极,是生两仪,两仪生四象,四象生八卦。”图中每个阳、阴爻分别代表数9与数6,其中数字的配置依照“九六”说,是一种均衡的数字配置。在八卦中,相对称的卦象,如乾与坤,其象数之和均为45。它与洛书中1至9的数字之和相同周(约公元前11世纪~公元前256年):奴隶制经济获得进一步的发展.“数”作为六艺之一,开始形成一个学科。算筹记数和四则运算已经开始春秋战国时期:人们已经能熟练地进行筹算。中国古代数学的萌芽“数学”一词相当于我国古代的“算术”数学一词,在中国最早出现在12世纪宋代数学家秦九韶的著作中。他指出“物生有象,象生有数,乘除推阐,务究造化之源者,是数学”。中国古代数学的萌芽战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。儒家以“九数”为核心,具有鲜明的政治和人文色彩,并以《周易》象数学宇宙论为哲学依托.墨家则以几何学为核心,具有一定的抽象性和思辨性,以《墨经》的逻辑学为其论说的工具。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。《九章算术》中的名题:“女子善织,日子倍”。名家战国时诸子百家之一。先秦时期以辩论名实问题为中心的一个思想派别,重视“名”(概念)和“实”(事)的关系的研究。以正名辨义为主,主要代表为邓析、惠施、公孙龙等。《庄子·天下》有名家辩辞的记录。《史记·太史公自序》:“名家苛察缴绕……故曰‘使人俭而善失真’。”《汉书·艺文志》:“名家者流,盖出於礼官。”梁启超《论诸家之派别》:“名家言起於郑之邓析,而宋之惠施及赵之公孙龙大昌之。”中国古代数学的萌芽墨家认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。墨家是中国古代主要哲学派别之一,约产生于战国时期。创始人为墨翟。墨家是一个纪律严密的学术团体,其首领称“矩子”,其成员到各国为官必须推行墨家主张,所得俸禄亦须向团体奉献。墨家学派有前后期之分,前期思想主要涉及社会政治、伦理及认识论问题;后期墨家在逻辑学方面有重要贡献。中国古代数学的萌芽墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。中国古代数学的萌芽名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。《墨经》:点、线、面、方、圆等几何概念《考工记》:分数比例、角度大小的区分、标准容器的计算等《荀子》《管子》:“九九”乘法口诀。《春秋》:“初税亩”,测量田亩面积和计算的方法。《庄子·天下篇》:“一尺之棰,日取其半,万世不竭”,朴素的极限观念。《墨经》:点:端,体之无厚而最前者也;直线:直,参也;圆:圆,一中同长也.《史记》:齐威王与田忌赛马,对策论的最早例证。3.1.2《周髀算经》在现存的中国古代数学著作中,《周髀算经》是最早的一部。作者不祥,成书年代应不晚于公元前2世纪西汉时期,但书中涉及的数学、天文知识,有的可追溯到西周(公元前11世纪-前8世纪)。这部著作实际上是从数学上讨论“盖天说”(天圆地方)宇宙模型,反映了中国古代数学与天文学的密切联系。从数学上看,《周髀算经》主要的成就是分数运算、勾股定理及其在天文测量中的应用,其中关于勾股定理的论述最为突出。“周髀”是测量日影的工具—八尺长竿盖天说勾股定理宋版书影日高术《周髀算经》:数学著作,天文学著作.“盖天说”的代表.约成书于西汉时期(公元前2世纪).数学内容:学习数学的方法、用勾股定理来计算高深远近和比较复杂的分数计算等.《周髀算经》盖天说认为大地象个平面,天象口大锅扣在地上。注:到西汉时期,有盖天说、浑天说和宣夜说。浑天说认为天是球形的,大地在中间。宣夜说认为宇宙是无限的空间,天体浮生于其中,其运动需要“气”的作用。第一卷叙述了西周开国时期(约公元前1100年)周公商高的问答:《周髀算经》上卷:勾股定理的证明昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”“勾广三,股修四,径隅五”商高定理-----勾股定理返回“……以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日.”古典数学的形成与发展时期周人的测日影表古代认为夏至时立一8尺高的标竿,它的影长正好是6尺。“求邪至日者,以日下为勾,以日高为股,勾股各自乘,并而开方除之,得邪至日从髀所旁至日所十万里。”日高公式(重差术):heSOchhd×=+=+表高表距日高表高表高影差影差d=后影长BD—前影长AC=b—a表距AB=e日前表后表前影后影南戴日下日远日高A’B’OAaCBbDSO’hhhc日高公式(重差术)古典数学的形成与发展时期第二章叙述陈子荣方的对话。陈子是周代的天文算学家,荣方是当时天文算学的爱好者。荣方对陈子的数学才能很羡慕,十分虚心地向陈子求教。陈子教给荣方学习和研究数学的方法,同时还教给荣方具体解决问题的方法。古典数学的形成与发展时期关于数学特点。荣方请教陈子:“今者窃闻夫子之道。知日之高大,光之所照,一日所行,远近之数,人所望见,四极之穷,列星之宿,天地之广,夫子之道皆能知之。其信有之乎?”陈子曰:“然,引皆算术之所及。”陈子又曰:“……此亦望远起高之术,……夫道术,言约而用博……”古典数学的形成与发展时期关于学习数学的方法陈子对荣方说:“思之未熟。……则子之于数,未能通类。……问一类而以万事达者,谓之知道。”“夫道术所以难通者,既学矣,患其不博。既博矣,患其不习。既习矣,患其不能知。”古典数学的形成与发展时期关于学习态度。“夫学同业而不能入神者,此不肖无智而业不能精习。”中国数学史上最先完成勾股定理证明的数学家,是公元3世纪三国时期的赵爽(吴)。赵爽注《周髀算经》,作“勾股圆方图”,其中的“弦图”,相当于运用面积的出入相补证明了勾股定理。考察以一直角三角形的勾和股为边的两个正方形的合并图形,其面积应有如果将这合并图形所含的两个三角形移补到图中所示的位置,将得到一个以原三角形之弦为边的正方形,其面积应为,因此.22ba2c.222cba勾股定理的证明弦图abcaa2b2古代数学家赵爽赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。生平不详,约生活于公元3世纪初。赵爽的《周髀算经注》逐段解释《周髀》经文。古代数学家赵爽赵爽自称负薪余日,研究《周髀》,遂为之作注,可见是一个未脱离体力劳动的天算学家。3.1.3《九章算术》《九章算术》是中国古典数学最重要的著作。成书年代至迟在公元前1世纪,其中的数学内容,有些也可以追溯到周代。《周礼》记载,西周贵族子弟必学的六门课程(“六艺”)中有一门是“九数”,刘徽《九章算术注》“序”中就称《九章算术》是由“九数”发展而来,并经过西汉张苍(?-公元前152)、耿寿昌等人删补。《九章算术》采用问题集的形式,全书246个问题,分成九章。中国古代数学体系形成《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。中国古代数学体系形成秦汉时期强调数学的应用性。成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法。《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。《九章算术》的内容是由周代的“九数”发展而来的。刘徽称:“周公制礼而有九数,九数之流则《九章》是矣”。•《九章算术》标志着中国传统数学的知识体系已初步形成。代表了中国传统数学体系和思想方法的特点:注重实际问题的数值计算方法,缺少抽象的理论和逻辑系统性,使用算筹,形成世界上独有的计算工具和程序化计算方法明代刊印的《九章算术注》中国古代数学体系形成《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并
本文标题:《数学史》周髀算经》与《九章算术》
链接地址:https://www.777doc.com/doc-3825443 .html