您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 2009年辽宁省高考数学试卷(文科)答案与解析
12009年辽宁省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•辽宁)已知集合M={x|﹣2<x≤5},N={x|x<﹣5或x>5},则M∪N=()A.{x|x<﹣5或x>﹣2}B.{x|﹣5<x<5}C.{x|﹣2<x<5}D.{x|x<﹣3或x>5}【考点】并集及其运算.菁优网版权所有【分析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:在数轴上画出集合M={x|﹣2<x≤5},N={x|x<﹣5或x>5},如图:则M∪N={x|x<﹣5或x>﹣2}.故选A.【点评】本题属于以数轴为工具,求集合的并集的基础题,也是高考常考的题型.2.(5分)(2009•辽宁)已知复数z=1﹣2i,那么=()A.B.C.D.【考点】复数代数形式的混合运算.菁优网版权所有【分析】复数的分母实数化,然后化简即可.【解答】解:=故选D.【点评】复数代数形式的运算,是基础题.3.(5分)(2009•辽宁)已知{an}为等差数列,且a7﹣2a4=﹣1,a3=0,则公差d=()A.﹣2B.﹣C.D.2【考点】等差数列.菁优网版权所有【专题】计算题;方程思想.【分析】利用等差数列的通项公式,结合已知条件列出关于a1,d的方程组,求解即可.【解答】解:设等差数列{an}的首项为a1,公差为d,由等差数列的通项公式以及已知条件得,即,解得d=﹣,2故选B.【点评】本题考查了等差数列的通项公式,熟记公式是解题的关键,同时注意方程思想的应用.4.(5分)(2009•辽宁)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=()A.B.C.4D.12【考点】向量加减混合运算及其几何意义.菁优网版权所有【分析】根据向量的坐标求出向量的模,最后结论要求模,一般要把模平方,知道夹角就可以解决平方过程中的数量积问题,题目最后不要忘记开方.【解答】解:由已知|a|=2,|a+2b|2=a2+4a•b+4b2=4+4×2×1×cos60°+4=12,∴|a+2b|=.故选:B.【点评】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,根据和的模两边平方,注意要求的结果非负,舍去不合题意的即可.两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积,结果可正、可负、可以为零,其符号由夹角的余弦值确定.5.(5分)(2009•辽宁)如果把地球看成一个球体,则地球上的北纬60°纬线长和赤道长的比值为()A.0.8B.0.75C.0.5D.0.25【考点】球面距离及相关计算.菁优网版权所有【专题】计算题.【分析】先求北纬60°纬圆半径,求出纬线长,再求赤道长,即可.【解答】解:设地球半径为R,则北纬60°纬线圆的半径为Rcos60°=R而圆周长之比等于半径之比,故北纬60°纬线长和赤道长的比值为0.5.故选C.【点评】本题考查球面距离及其他计算,考查空间想象能力,是基础题.6.(5分)(2009•辽宁)已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f(x+1),则f(2+log23)=()A.B.C.D.【考点】对数的运算性质.菁优网版权所有【分析】根据3<2+log23<4知,符合x<4时的解析式,故f(2+log23)=f(3+log23),又有3+log23>4知,符合x>4的解析式,代入即得答案.【解答】解:∵3<2+log23<4,所以f(2+log23)=f(3+log23)且3+log23>4∴f(2+log23)=f(3+log23)3=故选A.【点评】本题主要考查已知分段函数的解析式求函数值的问题.7.(5分)(2009•辽宁)已知圆C与直线x﹣y=0及x﹣y﹣4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y﹣1)2=2B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y﹣1)2=2D.(x+1)2+(y+1)2=2【考点】圆的标准方程.菁优网版权所有【分析】圆心在直线x+y=0上,排除C、D,再验证圆C与直线x﹣y=0及x﹣y﹣4=0都相切,就是圆心到直线等距离,即可.【解答】解:圆心在x+y=0上,圆心的纵横坐标值相反,显然能排除C、D;验证:A中圆心(﹣1,1)到两直线x﹣y=0的距离是;圆心(﹣1,1)到直线x﹣y﹣4=0的距离是.故A错误.故选B.【点评】一般情况下:求圆C的方程,就是求圆心、求半径.本题是选择题,所以方法灵活多变,值得探究.8.(5分)(2009•辽宁)已知tanθ=2,则sin2θ+sinθcosθ﹣2cos2θ=()A.﹣B.C.﹣D.【考点】三角函数中的恒等变换应用;同角三角函数基本关系的运用.菁优网版权所有【专题】计算题.【分析】利用sin2θ+cos2θ=1,令原式除以sin2θ+cos2θ,从而把原式转化成关于tanθ的式子,把tanθ=2代入即可.【解答】解:sin2θ+sinθcosθ﹣2cos2θ====.故选D.【点评】本题主要考查了三角函数的恒等变换应用.本题利用了sin2θ+cos2θ=1巧妙的完成弦切互化.9.(5分)(2009•辽宁)ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()4A.B.C.D.【考点】几何概型.菁优网版权所有【专题】计算题.【分析】本题考查的知识点是几何概型的意义,关键是要找出点到O的距离大于1的点对应的图形的面积,并将其和长方形面积一齐代入几何概型计算公式进行求解.【解答】解:已知如图所示:长方形面积为2,以O为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为因此取到的点到O的距离大于1的概率P==1﹣故选B.【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.10.(5分)(2009•辽宁)某店一个月的收入和支出总共记录了N个数据a1,a2,…aN,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的()5A.A>0,V=S﹣TB.A<0,V=S﹣TC.A>0,V=S+TD.A<0,V=S+T【考点】设计程序框图解决实际问题.菁优网版权所有【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知S表示月收入,T表示月支出,V表示月盈利,根据收入记为正数,支出记为负数,故条件语句的判断框中的条件为判断累加量A的符号,由分支结构的“是”与“否”分支不难给出答案,累加完毕退出循环后,要输出月收入S,和月盈利V,故在输出前要计算月盈利V,根据收入、支出与盈利的关系,不难得到答案.【解答】解析:月总收入为S,支出T为负数,因此A>0时应累加到月收入S,故判断框内填:A>0又∵月盈利V=月收入S﹣月支出T,但月支出用负数表示因此月盈利V=S+T故处理框中应填:V=S+T故选A>0,V=S+T【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.11.(5分)(2009•辽宁)下列4个命题p2:∃x∈(0,1),㏒1/2x>㏒1/3x㏒1/2x㏒1/3x6其中的真命题是()A.p1,p3B.p1,p4C.p2,p3D.p2,p4【考点】命题的真假判断与应用;指数函数的单调性与特殊点;对数函数的单调性与特殊点.菁优网版权所有【专题】压轴题.【分析】本题的考查意图是指数函数和对数函数的单调性,但作为选择题来讲,此类题采用特殊值法更好.【解答】解:取x=,则㏒1/2x=1,㏒1/3x=log32<1,p2正确.当x∈(0,)时,()x<1,而㏒1/3x>1.p4正确故选D.【点评】特殊值法是解决选择题的常用解法之一,特点是快捷、实用,不易出错相当于实践验证.12.(5分)(2009•辽宁)已知偶函数f(x)在区间[0,+∞)单调增加,则满足f(2x﹣1)<f()的x取值范围是()A.(,)B.[,)C.(,)D.[,)【考点】奇偶性与单调性的综合.菁优网版权所有【专题】分析法;函数的性质及应用.【分析】由题设条件偶函数f(x)在区间[0,+∞)单调增加可得出此函数先减后增,以y轴为对称轴,由此位置关系转化不等式求解即可【解答】解析:∵f(x)是偶函数,故f(x)=f(|x|)∴f(2x﹣1)=f(|2x﹣1|),即f(|2x﹣1|)<f(||)又∵f(x)在区间[0,+∞)单调增加得|2x﹣1|<,解得<x<.故选A.【点评】本题考查了利用函数的单调性和奇偶性解不等式,在这里要注意本题与下面这道题的区别:已知函数f(x)在区间[0,+∞)单调增加,则满足f(2x﹣1)<的x取值范围是()二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•辽宁)在平面直角坐标系xOy中,四边形ABCD的边AB∥DC,AD∥BC.已知点A(﹣2,0),B(6,8),C(8,6),则D点的坐标为(0,﹣2).【考点】相等向量与相反向量.菁优网版权所有【分析】由四边形ABCD的边AB∥DC,AD∥BC,和三个点的坐标,可以先设出点的坐标,根据两条对角线交于一点,用中点坐标公式得到结果.【解答】解:设D(x,y),∵AC与BD中点相同7∴﹣2+8=6+x,∴x=0又0+6=8+y,y=﹣2∴D=(0,﹣2),故答案为:(0,﹣2).【点评】向量首尾相连,构成封闭图形,则四个向量的和是零向量,用题目给出的三个点的坐标,再设出要求的坐标,写出首尾相连的四个向量的坐标,让四个向量相加结果是零向量,解出设的坐标.14.(5分)(2009•辽宁)已知函数f(x)=sin(ωx+φ)(ω>0)的图象如图所示,则ω=.【考点】三角函数的周期性及其求法;y=Asin(ωx+φ)中参数的物理意义.菁优网版权所有【专题】数形结合.【分析】根据所给的图形,看出四分之一个周期的值,得到最小正周期,根据周期的计算公式,得到要求的值,本题主要考查读图问题,从图形中看出需要的结果.【解答】解:∵由图象可得最小正周期4(﹣)=T=∴ω==.故答案为:.【点评】根据所给的图形,看出四分之一个周期的值,得到最小正周期,根据周期的计算公式,得到要求的值,本题主要考查读图问题,从图形中看出需要的结果.15.(5分)(2009•辽宁)若函数f(x)=在x=1处取极值,则a=3.【考点】利用导数研究函数的极值.菁优网版权所有【专题】计算题;压轴题.【分析】先求出f′(x),因为x=1处取极值,所以1是f′(x)=0的根,代入求出a即可.【解答】解:f′(x)==.因为f(x)在1处取极值,所以1是f′(x)=0的根,将x=1代入得a=3.故答案为38【点评】考查学生利用导数研究函数极值的能力.16.(5分)(2009•辽宁)设某几何体的三视图如图(尺寸的长度单位为m)则该几何体的体积为4m3.【考点】由三视图求面积、体积.菁优网版权所有【专题】计算题;压轴题.【分析】由三视图可知几何体是三棱锥,明确其数据关系直接解答即可.【解答】解:这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3,体积等于×2×4×3=4故答案为:4【点评】本题考查三视图求体积,三视图的复原,考查学生空间想象能力,是基础题.三、解答题(共6小题,满分70分)17.(10分)(2009•辽宁)等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列,(1)求{an}的公比q;(2)求a1﹣a3=3,求Sn.【考点】等差数列的性质;等比数列的前n项和.菁优网版权所有【专题】等差数列与等比数列.【分析】(Ⅰ)
本文标题:2009年辽宁省高考数学试卷(文科)答案与解析
链接地址:https://www.777doc.com/doc-3839732 .html