您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 述职报告 > 四川省绵阳市2017年高考数学二诊试卷(理科)(解析版)
四川省绵阳市2017年高考数学二诊试卷(理科)(解析版)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x∈Z|x≥2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.∅B.{2}C.{2,3}D.{x|2≤x<3}2.若复数z满足(1+i)z=i(i是虚数单位),则z的虚部为()A.B.﹣C.iD.﹣3.某校共有在职教师200人,其中高级教师20人,中级教师100人,初级教师80人,现采用分层抽样抽取容量为50的样本进行职称改革调研,则抽取的初级教师的人数为()A.25B.20C.12D.54.“a=1”是“直线l1:ax+(a﹣1)y﹣1=0与直线l2:(a﹣1)x+(2a+3)y﹣3=0垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.某风险投资公司选择了三个投资项目,设每个项目成功的概率都为,且相互之间设有影响,若每个项目成功都获利20万元,若每个项目失败都亏损5万元,该公司三个投资项目获利的期望为()A.30万元B.22.5万元C.10万元D.7.5万元6.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n等于()A.2B.3C.4D.57.若一个三位自然数的各位数字中,有且仅有两个数字一样,我们把这样的三位自然数定义为“单重数”,例:112,232,则不超过200的“单重数”个数是()A.19B.27C.28D.378.过点P(2,1)的直线l与函数f(x)=的图象交于A,B两点,O为坐标原点,则=()A.B.2C.5D.109.已知cosα,sinα是函数f(x)=x2﹣tx+t(t∈R)的两个零点,则sin2α=()A.2﹣2B.2﹣2C.﹣1D.1﹣10.设F1,F2分别为双曲线C:的两个焦点,M,N是双曲线C的一条渐近线上的两点,四边形MF1NF2为矩形,A为双曲线的一个顶点,若△AMN的面积为,则该双曲线的离心率为()A.3B.2C.D.11.已知点P(﹣2,)在椭圆C:+=1(a>b>0)上,过点P作圆C:x2+y2=2的切线,切点为A,B,若直线AB恰好过椭圆C的左焦点F,则a2+b2的值是()A.13B.14C.15D.1612.已知f(x)=ex,g(x)=lnx,若f(t)=g(s),则当s﹣t取得最小值时,f(t)所在区间是()A.(ln2,1)B.(,ln2)C.(,)D.(,)二、填空题(共4小题,每小题5分,满分20分)13.()5的展开式的常数项为.14.已知甲、乙二人能译出某种密码的概率分别为和,现让他们独立地破译这种密码,则至少有1人能译出密码的概率为.15.已知直线mx﹣y+m+2=0与圆C1:(x+1)2+(y﹣2)2=1相交于A,B两点,点P是圆C2:(x﹣3)2+y2=5上的动点,则△PAB面积的最大值是.16.已知抛物线C:y2=4x,焦点为F,过点P(﹣1,0)作斜率为k(k>0)的直线l与抛物线C交于A,B两点,直线AF,BF分别交抛物线C于M,N两点,若+=18,则k=.三、解答题(共5小题,满分60分)17.(12分)数列{an}中,an+2﹣2an+1+an=1(n∈N*),a1=1,a2=3..(1)求证:{an+1﹣an}是等差数列;(2)求数列{}的前n项和Sn.18.(12分)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且a<b<c,C=2A.(1)若c=a,求角A;(2)是否存在△ABC恰好使a,b,c是三个连续的自然数?若存在,求△ABC的周长;若不存在,请说明理由.19.(12分)2016年下半年,锦阳市教体局举行了市教育系统直属单位职工篮球比赛,以增强直属单位间的交流与合作,阻值方统计了来自A1,A2,A3,A4,A5等5个直属单位的男子篮球队的平均身高与本次比赛的平均得分,如表所示:单位A1A2A3A4A5平均身高x(单位:170174176181179cm)平均得分y6264667068(1)根据表中数据,求y关于x的线性回归方程;(系数精确到0.01)(2)若M队平均身高为185cm,根据(I)中所求得的回归方程,预测M队的平均得分(精确到0.01)注:回归当初中斜率和截距最小二乘估计公式分别为,.20.(12分)已知椭圆C:的右焦点F(),过点F作平行于y轴的直线截椭圆C所得的弦长为.(1)求椭圆的标准方程;(2)过点(1,0)的直线l交椭圆C于P,Q两点,N点在直线x=﹣1上,若△NPQ是等边三角形,求直线l的方程.21.(12分)已知函数f(x)=+lnx﹣1(m∈R)的两个零点为x1,x2(x1<x2).(1)求实数m的取值范围;(2)求证:+>.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C的参数方程是(α为参数)(1)将C的参数方程化为普通方程;(2)在直角坐标系xOy中,P(0,2),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρcosθ+ρsinθ+2=0,Q为C上的动点,求线段PQ的中点M到直线l的距离的最小值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|x﹣t|(t∈R)(1)t=2时,求不等式f(x)>2的解集;(2)若对于任意的t∈[1,2],x∈[﹣1,3],f(x)≥a+x恒成立,求实数a的取值范围.2017年四川省绵阳市高考数学二诊试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x∈Z|x≥2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.∅B.{2}C.{2,3}D.{x|2≤x<3}【考点】交集及其运算.【分析】化简集合B,根据交集的定义写出A∩B即可.【解答】解:集合A={x∈Z|x≥2},B={x|(x﹣1)(x﹣3)<0}={x|1<x<3},则A∩B={2}.故选:B.【点评】本题考查了集合的化简与运算问题,是基础题目.2.若复数z满足(1+i)z=i(i是虚数单位),则z的虚部为()A.B.﹣C.iD.﹣【考点】复数代数形式的乘除运算.【分析】由(1+i)z=i,得,再利用复数代数形式的乘除运算化简复数z,则答案可求.【解答】解:由(1+i)z=i,得=,则z的虚部为:.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.某校共有在职教师200人,其中高级教师20人,中级教师100人,初级教师80人,现采用分层抽样抽取容量为50的样本进行职称改革调研,则抽取的初级教师的人数为()A.25B.20C.12D.5【考点】分层抽样方法.【分析】根据分层抽样的定义即可得到结论.【解答】解:∵初级教师80人,∴抽取一个容量为50的样本,用分层抽样法抽取的初级教师人数为,解得n=20,即初级教师人数应为20人,故选:B.【点评】本题主要考查分层抽样的应用,比较基础.4.“a=1”是“直线l1:ax+(a﹣1)y﹣1=0与直线l2:(a﹣1)x+(2a+3)y﹣3=0垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及直线的垂直关系判断即可.【解答】解:若直线l1:ax+(a﹣1)y﹣1=0与直线l2:(a﹣1)x+(2a+3)y﹣3=0垂直,则:a(a﹣1)+(a﹣1)(2a+3)=0,解得:a=1或﹣1,故“a=1”是“直线l1:ax+(a﹣1)y﹣1=0与直线l2:(a﹣1)x+(2a+3)y﹣3=0垂直”的充分不必要条件,故选:A.【点评】本题考查了充分必要条件,考查直线的垂直关系,是一道基础题.5.某风险投资公司选择了三个投资项目,设每个项目成功的概率都为,且相互之间设有影响,若每个项目成功都获利20万元,若每个项目失败都亏损5万元,该公司三个投资项目获利的期望为()A.30万元B.22.5万元C.10万元D.7.5万元【考点】离散型随机变量的期望与方差.【分析】设该公司投资成功的个数为X,则X~B.进而得出.【解答】解:设该公司投资成功的个数为X,则X~B.∴E(X)==.∴该公司三个投资项目获利的期望==22.5万元.故选:B.【点评】本题考查了二项分布列及其数学期望,考查了推理能力与计算能力,属于中档题.6.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n等于()A.2B.3C.4D.5【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当n=1时,a=,b=4,满足进行循环的条件,当n=2时,a=,b=8满足进行循环的条件,当n=3时,a=,b=16满足进行循环的条件,当n=4时,a=,b=32不满足进行循环的条件,故输出的n值为4,故选C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.7.若一个三位自然数的各位数字中,有且仅有两个数字一样,我们把这样的三位自然数定义为“单重数”,例:112,232,则不超过200的“单重数”个数是()A.19B.27C.28D.37【考点】进行简单的合情推理.【分析】根据“单重数”的定义,分类讨论,即可得出结论.【解答】解:由题意,不超过200,两个数字一样为0,有2个,两个数字一样为1,110,101,112,121,113,131,114,141,115,151,116,161,117,171,118,181,119,191,有18个,两个数字一样为2,122,有一个,同理两个数字一样为3,4,5,6,7,8,9,各1个,综上所述,不超过200的“单重数”个数是2+18+8=28,故选C.【点评】本题考查合情推理,考查计数原理的运用,正确分类讨论是关键.8.过点P(2,1)的直线l与函数f(x)=的图象交于A,B两点,O为坐标原点,则=()A.B.2C.5D.10【考点】平面向量数量积的运算.【分析】f(x)==1+,可得函数f(x)=的图象关于点P(2,1)对称,过点P(2,1)的直线l与函数f(x)=的图象交于A,B两点,A,B两点关于点P(2,1)对称⇒=即可.【解答】解:f(x)==1+,∴函数f(x)=的图象关于点P(2,1)对称,∴过点P(2,1)的直线l与函数f(x)=的图象交于A,B两点,A,B两点关于点P(2,1)对称,∴,则=,||=,∴则=2×5=10.故选:D.【点评】本题考查了函数的对称性及向量的运算,属于中档题.9.已知cosα,sinα是函数f(x)=x2﹣tx+t(t∈R)的两个零点,则sin2α=()A.2﹣2B.2﹣2C.﹣1D.1﹣【考点】三角函数的化简求值;函数的零点与方程根的关系.【分析】通过韦达定理可求sinα+cosα=t,sinαcosα=t,利用sin2α+cos2α=1,则可得答案.【解答】解:∵cosα,sinα是函数f(x)=x2﹣tx+t(t∈R)的两个零点,∴sinα+cosα=t,sinαcosα=t,由sin2α+cos2α=1,得(sinα+cosα)2﹣2sinαcosα=1,即t2﹣2t=1,解得t=.∴sin2α=2sinαcosα=2t=.故选:A.【点评】本题考查三角函数化简求值,注意同角三角函数的基本关系式的应用,考查计算能力,是基础题.10.设F1,F2分别为双曲线C:的两个焦点,M,N是双曲线C的一条渐近线上的两点,四边形MF1NF2为矩形,A为双曲线的一个顶点,若△AMN的面积为,则该双曲线的离心率为()A.3B.2C.D.【考点】双曲线的简单性质.【分析】设M(x,x),由题意,|MO|=c,则
本文标题:四川省绵阳市2017年高考数学二诊试卷(理科)(解析版)
链接地址:https://www.777doc.com/doc-3839805 .html