您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 植物生理学 第1章 水分生理
本书内容•第一篇植物的物质生产和光能利用包括水分生理、矿质营养和光合作用•第二篇植物体内物质和能量的转变包括呼吸作用、有机物代谢(次生代谢)、有机物运输。•第三篇植物的生长发育包括信号转导、生长物质、光形态建成、生长生理、生殖生理、成熟和衰老、抗性生理。•代谢(metablolism):是指维持各种生命活动(如生长、发育、繁殖和运动)过程中化学变化(包括物质合成、转化和分解)的总称。•分为:同化(assimilation)或合成代谢(anabolism)异化(dissimilation)或分解代谢(catabolism)第一章植物的水分代谢Chapter1PlantWaterMetabolism•Contentsinbrief:AbsorptionofwaterTransportofwaterLossofwater(transpiration)Irrigation本章内容第一节植物对水分的需要第二节植物细胞对水分的吸收第三节植物根系对水分的吸收第四节蒸腾作用第五节植物体内水分的运输第六节合理灌溉的生理基础§1、植物对水分的需要⑴不同植物的含水量不同。•水生植物90%;旱生地衣6%,一般植物55~85%⑵同一植物生长在不同环境含水量有变化⑶同一植株,不同器官和不同组织含水量不同生长旺盛部位如根尖、芽、幼叶60~90%;生长缓慢部位如主干35~60%;体眠种子5~15%凡生命代谢活动旺盛处含水量高。1、1植物的含水量测定含水量的指标:•含水量=(鲜重-干重)/鲜重×100%WC=(FW-DW)/FW×100%•相对含水量=(鲜重-干重)/(饱和鲜重-干重)×100%RWC=(FW-DW)/(SFW-DW)×100%干重的测定:105℃杀青15min,85℃烘干至恒重(一般48h)。1、2植物体内水分存在的状态•水分在植物体内以束缚水和自由水两种状态存在。束缚水(boundwater):是指牢固地与细胞内的胶体颗粒吸附而不易流动的水。自由水(freewater):距胶粒较远而可以自由移动的水。•自由水可参加细胞的各种代谢活动,而束缚水不能。•自由水与束缚水的比例决定了原生质胶体所处的状态:比例大时,原生质颗粒均匀地分散在水中,颗粒之间联系弱,胶体呈溶液状态,这种胶体称为溶胶sol;反之,原生质胶粒相互联结成网状而水分子分布于网眼中,胶体失去其流动性而凝结为固体的状态,称为凝胶gel。•当原生质呈现溶胶状态时,植物代谢旺盛;凝胶状态时,代谢缓慢,但对不良环境的抗性增大。1、3水分在植物生命活动中的作用1.水分是原生质的主要成分(70~90%),水分的多少决定植物代谢活动的强弱。2.水分是代谢过程的反应物或产物。3.水分是植物对物质吸收和运输的溶剂。4.水分使植物保持固有姿态,枝叶挺立,以进行各种活动(光合作用在缺水10~12%时受影响,缺水20%明显受抑制)。5.水分能使细胞保持紧张度,细胞只有处于膨胀状态才能扩大、分裂,这是植物生长、繁殖的基础。6.水可以调节环境微气候,增加湿度,改善土壤及地表大气成分,具生态作用。§2、植物细胞对水分的吸收•植物细胞吸水主要有3种方式:扩散、集流和渗透作用。一、扩散(diffusion):水分子的随机热运动所造成的水分从浓度高的区域向浓度低的区域移动。动力为浓度梯度。二、集流(massflow):是指液体中成群的原子或分子在压力梯度下的共同移动。动力为压力梯度。植物体内水分的集流主要通过质外体,尤其是导管系统。细胞间水分集流则通过膜上的水孔蛋白(aquaporin),包括质膜上和液泡膜上的内在蛋白。水分的跨膜运送与水孔蛋白•水孔蛋白(aquaporin)是一种位于质膜、液泡膜和某些细胞器膜上的主要内在蛋白(MIP),MW26~30KD,它由6个α-helix跨膜而成通道,允许水分子通过。•水分通过水孔蛋白迁移的速度远远大于通过脂双分子层的速度。水分跨膜运输途径示意图(Buchananetal.2000)A.水分子通过水孔蛋白形成的水通道B.水分子通过膜脂间隙进人细胞水孔蛋白的结构(依据Buchananetal.2000修改)水孔蛋白的三维结构模型(引自Maeshima,2001)2003年诺贝尔奖•10月8日诺贝尔化学奖名单上的两位科学家是美国人阿格雷(PeterAgre)和麦金农(RoderickMacKinnon),他们的发现都涉及到了“细胞膜上的通道”。•约翰·霍普金斯大学医学院的生物化学教授Agre发现了水孔蛋白。•洛克菲勒大学的MacKinnon完成了一项几乎不可能的任务:绘制出了世界上第一张钾离子通道(蛋白质)的三维结构图。水孔蛋白的两篇文献•ChrispeelsMaartenJ.,CrawfordNigelM.,andSchroederJulianI..(1999)ProteinsforTransportofWaterandMineralNutrientsacrosstheMembranesofPlantCells.ThePlantCell,11:661–675•侯彩霞,黄昊,汤章程。植物细胞的水孔蛋白。植物生理学通讯,1997,33(2):151-156关于查找文献•通过google、baidu等查找。•图书馆中文献查找:中文(维普、cnki、万方)外文(elsevier、springer等)。•或者在google、baidu中直接查找某个杂志后,到其主页下载。•可以直接通过网络向网友或作者索取。•几个网址:小木虫生物谷三、渗透作用(osmosis)动力为水势梯度。水势的概念及水的迁移1、自由能、化学势、水势1.)自由能(freeenergy):体系内可以用于做功的能量。而束缚能(boundenergy)是不能用于做功的能量。2.)化学势(chemicalpotential):指一个体系中,在恒温恒压下1mol某物质的自由能(偏摩尔自由能),用μ表示。它衡量物质反应或做功的能量。规定纯水的化学势为0焦耳/摩尔(Nm/mol)。•B物质从体系1→体系2,当μB0时,可自发发生,不需能;反之不能自发发生。3.)水势在植物生理学中,通常不用水的化学势而用水势来考虑水做功的能量,以及其流动。定义为体系中水的化学势与同温同压下纯水化学势的差除以水的偏摩尔体积;或称为偏摩尔体积水的化学势,用Ψ表示。Ψ=(μw-μw0)/Vw单位(Nm/mol)/(m3/mol)单位:帕斯卡(Pa),巴(1bar=105Pa),Mpa,atm(1标准大气压=1.01325×105Pa)规定纯水的水势为0,溶液为负值。水总是从水势高处向水势低处流。4.)偏摩尔体积(partialmolarvolumeV):在恒温恒压下,向一足够大的某一浓度的溶液中加入1mol的物质,引起体系体积的变化量;也可以说是在恒温恒压下,1mol某组分在体系中所体现出来的体积。如20℃,1atm下1mol甲醇的体积是40.5cm3,向任何体积的纯甲醇中加入1mol甲醇,体积都会增加40.5cm3,但如果是向甲醇的水溶液中加甲醇,体积的增加就不再是40.5cm3,而是小于40.5cm3。故称为偏摩尔体积。甲醇/水溶液的摩尔分数甲醇的偏摩尔体积1:040.50.840.40.639.80.439.00.237.8几种常见化合物水溶液的水势溶液ψw(MPa)纯水0Hoagland营养液-0.05海水-2.691mol·L-1蔗糖-2.501mol·L-1KCl-4.50渗透作用示意图2、渗透作用是指水透过半透膜的一种迁移方式,它是物质依浓度梯度和压力梯度移动的过程,渗透作用是由膜两侧的水势差所驱动的。植物细胞可以看作一个渗透系统,质壁分离和质壁分离复原现象可以证明。高渗溶液质壁分离现象渗透吸水植物细胞与环境溶液构成渗透系统通过质壁分离现象可以:•判断细胞死活•测定细胞渗透势质壁分离(plasmolysis)与质壁分离复原(deplasmolysis)3、植物细胞水势的组成Ψw=Ψπ+Ψp+Ψg+Ψm1、Ψπ(Ψs)isthesolutepotential(溶质势/渗透势)•由于溶液中溶质颗粒的存在而使水势降低的值。纯水的溶质势为0,溶液的渗透势可根据Van‘tHoffEquation计算:•Ψs=-iRTC•其中i是溶质的解离系数(蔗糖、葡萄糖等不解离物质为1,盐大于1,如低浓度NaCl为1.8),R是气体常数(8.314J/mol·K)或0.082Latm/mol·K(大气压)或0.083L·bar/mol·K(巴)),T是绝对温度(K),C是溶液的摩尔浓度。负号表明溶质起降低渗透势的作用。2.Ψpisthepressurepotential(压力势)•压力势是指外界(如细胞壁)对细胞的压力而使水势增大的值.规定在标准状况下(1atm)下溶液的压力势为0,膨胀的细胞其压力势0,而在剧烈蒸腾时细胞压力势<0。3.Ψg是重力势(gravitypotential),是水分因为重力下移与相反力量相等时的力量。即因为重力作用使植物细胞内水分下移的力量。4.在提到干种子、细胞壁、干土壤时,经常提到水势的另一组分——衬质势ψmψmisthematricpotential(衬质势)衬质势是由于胶体物质的亲水性和毛细管对水的束缚而引起水势降低的值。一般说,在植物细胞形成液泡前衬质势很低(负值很大),而在形成液泡后衬质势很小。成熟的有液泡的植物细胞水势时只考虑:ψw=Ψπ+ψp;另外,干种子:Ψ=Ψm;质壁分离时:Ψw=Ψπ植物细胞吸水的方式•一般说来,植物细胞在形成液泡前,是靠吸胀作用(imbibition)吸水,即通过亲水胶体的低衬质势吸水,而在形成液泡后靠渗透作用吸水。这些方式都是被动的,不消耗代谢能。•细胞间水流的方向:高水势细胞→低水势细胞。细胞间水分移动Ψs=-8巴Ψp=4巴Ψw=-4巴Ψs=-10巴Ψp=5巴Ψw=-5巴甲细胞已细胞•问题:•(1)甲、乙两细胞,甲放在0.4M的蔗糖溶液中,充分平衡后,测得其渗透势为-0.8RT;乙放在0.3M的NaCl溶液中,充分平衡后,测得其渗透势为-0.7RT,假定i蔗糖=1,iNaCl=2,问①甲、乙两细胞谁的压力势大:②取出两细胞后紧密接触,水分流动方向如何?③若破坏细胞壁和质膜,水分又如何流动?植物细胞的质壁分离现象未发生质壁分离初始质壁分离原生质体与细胞壁完全分离角隅细胞水势、溶质势、压力势与细胞体积的关系4、测定水势及其组分的方法测水势:热电偶法;压力室法;小液流法•测渗透势:冰点下降法、质壁分离法、蒸汽压增加法•测压力势:压力探针法土壤—植物—大气连续体中的水势一般说来,土壤水势植物根水势茎木质部水势叶片水势大气水势,使根系吸收的水分能够不断运往地上部分。这使土壤—植物—大气成为一个连续整体(Soil-plant-atmospherecontinuum,SPAC)。1.3.1植物根系吸水1.3.1.1根系吸水的部位叶面吸水,但数量很小。植物吸水的主要器官是根系。根系吸水的部位主要是在根尖。其中以根毛区的吸水能力最强。这是因为根毛大大增加了吸收面积,同时根毛细胞壁的外部有果胶,亲水性强;根毛区疏导组织发达。所以,移栽苗木时,宜带土移栽,这可尽量保护更多根尖。§3根系吸水及水分向上运输1.3.1.2根系吸水的途径植物根部吸水主要通过根毛、皮层、内皮层,再经中柱薄壁细胞进入导管。水分在根内的径向运转有质外体、跨膜途径和共质体等三条途径;水分在轴向运输通过导管。1.质外体途径(apoplastpathway):所谓质外体是指由细胞壁、细胞间隙、胞间层以及导管的空腔组成的部分。水分通过质外体进入根内部质外体空间并运输。2.共质体途径(symplastpathway):共质体是指由一个个生活的细胞通过胞间连丝组成的连续整体。水分通过胞间连丝进入另一个细胞的过程称为共质体
本文标题:植物生理学 第1章 水分生理
链接地址:https://www.777doc.com/doc-3854568 .html