您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【真题】2018年天津市高考数学试题(含答案和解释)
★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创1/21【真题】2018年天津市高考数学试题(含答案和解释)绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至5页。答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2.本卷共8小题,每小题5分,共40分。参考公式:★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创2/21•如果事件A,B互斥,那么P(A∪B)=P(A)+P(B).•棱柱的体积公式V=Sh.其中S表示棱柱的底面面积,h表示棱柱的高.•棱锥的体积公式,其中表示棱锥的底面积,h表示棱锥的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,,则A.B.c.D.【答案】c【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果.详解:由并集的定义可得:,结合交集的定义可知:.本题选择c选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.2.设变量满足约束条件则目标函数的最大值为A.6B.19c.21D.45【答案】c★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创3/21【解析】分析:由题意首先画出可行域,然后结合目标函数的解析式整理计算即可求得最终结果.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择c选项.3.设,则“”是“”的A.充分而不必要条件B.必要而不充分条件c.充要条件D.既不充分也不必要条件【答案】A【解析】分析:求解三次不等式和绝对值不等式,据此即可确定两条件的充分性和必要性是否成立即可.详解:求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“”的充分而不必要条件.本题选择A选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创4/21力.4.阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为A.1B.2c.3D.4【答案】B【解析】分析:由题意结合流程图运行程序即可求得输出的数值.详解:结合流程图运行程序如下:首先初始化数据:,,结果为整数,执行,,此时不满足;,结果不为整数,执行,此时不满足;,结果为整数,执行,,此时满足;跳出循环,输出.本题选择B选项.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.5.已知,则的大小关系为A.B.c.D.【答案】D★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创5/21【解析】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,,即,,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.6.将函数的图象向右平移个单位长度,所得图象对应的函数A.在区间上单调递增B.在区间上单调递减c.在区间上单调递增D.在区间上单调递减【答案】A【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.详解:由函数图象平移变换的性质可知:★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创6/21将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得函数的一个单调递增区间为,选项A正确,B错误;函数的单调递减区间满足:,即,令可得函数的一个单调递减区间为,选项c,D错误;本题选择A选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.7.已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且则双曲线的方程为A.B.c.D.【答案】A【解析】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c0),则,由可得:,★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创7/21不妨设:,双曲线的一条渐近线方程为,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.8.在如图的平面图形中,已知,则的值为A.B.c.D.0【答案】c【解析】分析:连结N,结合几何性质和平面向量的运算法则整理计算即可求得最终结果.详解:如图所示,连结N,由可知点分别为线段上靠近点的三等分点,则,★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创8/21由题意可知:,,结合数量积的运算法则可得:.本题选择c选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。2.本卷共12小题,共110分。二.填空题:本大题共6小题,每小题5分,共30分.9.i是虚数单位,复数___________.【答案】4–i【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则得:.点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创9/2110.已知函数f(x)=exlnx,为f(x)的导函数,则的值为__________.【答案】e【解析】分析:首先求导函数,然后结合导函数的运算法则整理计算即可求得最终结果.详解:由函数的解析式可得:,则:.即的值为e.点睛:本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力.11.如图,已知正方体ABcD–A1B1c1D1的棱长为1,则四棱柱A1–BB1D1D的体积为__________.【答案】【解析】分析:由题意分别求得底面积和高,然后求解其体积即可.详解:如图所示,连结,交于点,很明显平面,则是四棱锥的高,且,,结合四棱锥体积公式可得其体积为:.点睛:本题主要考查棱锥体积的计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力.★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创10/2112.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】【解析】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.13.已知a,b∈R,且a–3b+6=0,则2a+的最小值为__________.【答案】【解析】分析:由题意首先求得a-3b的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创11/21的条件.详解:由可知,且:,因为对于任意x,恒成立,结合均值不等式的结论可得:.当且仅当,即时等号成立.综上可得的最小值为.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14.已知a∈R,函数若对任意x∈[–3,+),f(x)≤恒成立,则a的取值范围是__________.【答案】[,2]【解析】分析:由题意分类讨论和两种情况,结合恒成立的条件整理计算即可求得最终结果.详解:分类讨论:①当时,即:,整理可得:,由恒成立的条件可知:,结合二次函数的性质可知:当时,,则;②当时,即:,整理可得:,由恒成立的条件可知:,★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创12/21结合二次函数的性质可知:当或时,,则;综合①②可得的取值范围是.点睛:对于恒成立问题,常用到以下两个结论:(1)a≥f(x)恒成立⇔a≥f(x)ax;(2)a≤f(x)恒成立⇔a≤f(x)in.有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,c,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设为事件“抽取的2名同学来自同一年级”,求事件发生的概率.【答案】(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人;(Ⅱ)(i)答案见解析;(ii).★精品文档★2016全新精品资料-全新公文范文-全程指导写作–独家原创13/21【解析】分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)由题意列出所有可能的结果即可,共有21种.(ii)由题意结合(i)中的结果和古典概型计算公式可得事件发生的概率为P()=.详解:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,c},{A,D},{A,E},{A,F},{A,G},{B,c},{B,D},{B,E},{B,F},{B,G},{c,D},{c,E},{c,F},{c,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii)由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A
本文标题:【真题】2018年天津市高考数学试题(含答案和解释)
链接地址:https://www.777doc.com/doc-3871707 .html