您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2017年河南省商丘市中考数学一模试卷
2017年河南省商丘市中考数学一模试卷2017年4月22日一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个正确选项)1.﹣3的倒数是()A.3B.﹣3C.D.2.下列各运算中,计算正确的是()A.=±3B.2a+3b=5abC.(﹣3ab2)2=9a2b4D.(a﹣b)2=a2﹣b23.据新华社北京2017年1月20日电国家统计局20日发布数据,初步核算,2016年我国国内生产总值(GDP)约74万亿元,若将74万亿用科学记数法表示为()A.7.4×1013B.7.4×1012C.74×1013D.0.74×10124.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是()A.5B.6C.7D.85.小红同学四次中考数学模拟考试成绩分别是:96,104,104,116,关于这组数据下列说法错误的是()A.平均数是105B.众数是104C.中位数是104D.方差是506.方程(x﹣2)(x﹣4)=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为()A.6B.8C.10D.8或107.一次函数y=﹣3x+b和y=kx+1的图象如图所示,其交点为P(3,4),则不等式kx+1≥﹣3x+b的解集在数轴上表示正确的是()A.B.C.D.8.现有四张完全相同的卡片,上面分别标有数字0,1,2,3,把卡片背面朝上洗匀,然后从中随机抽取两张卡片组成一个两位数,则这个两位数是偶然的概率是()A.B.C.D.9.若点A(﹣4,y1),B(﹣1,y2),C(1,y3)在抛物线y=﹣(x+2)2﹣1上,则()A.y1<y3<y2B.y2<y1<y3C.y3<y2<y1D.y3<y1<y210.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为()A.1:3B.1:5C.1:6D.1:11二、填空题(每小题3分,共15分)11.计算:|﹣2|﹣=.12.如图,若AB∥CD,∠C=60°,则∠A+∠E=度.13.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,tanA=,则k的值为.14.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为.15.如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为.三、解答题(本大题共8题,满分75分)16.先化简,再求值:÷(1﹣),其中x=+2.17.为了解2016年初中毕业生毕业后的去向,某县教育局对部分初三学生进行了抽样调查,就初三学生的四种去向(A,读普通高中;B,读职业高中;C,直接进入社会就业;D,其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请根据图中信息解答下列问题:(1)该县共调查了多少名初中毕业生?(2)通过计算,将两幅统计图中不完整的部分补充完整;(3)若该县2016年初三毕业生共有4500人,请估计该县今年的初三毕业生中准备读普通高中的学生人数.18.如图,已知⊙O的半径为1,AC是⊙O的直径,过点C作⊙O的切线BC,E是BC的中点,AB交⊙O于D点.(1)直接写出ED和EC的数量关系:;(2)DE是⊙O的切线吗?若是,给出证明;若不是,说明理由;(3)填空:当BC=时,四边形AOED是平行四边形,同时以点O、D、E、C为顶点的四边形是.19.如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数y=的图象在第四象限的相交于点P,并且PA⊥y轴于点A,已知A(0,﹣6),且S△CAP=18.(1)求上述一次函数与反比例函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.20.由于发生山体滑坡灾害,武警救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧地面上探测点A、B相距2米,探测线与该地面的夹角分别是30°和60°(如图所示),试确定生命所在点C的深度.(参考数据:≈1.414,,1.732,结果精确到0.1)21.某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A、B两种品牌的文具套装共1000套.(1)若小王按需购买A、B两种品牌文具套装共用22000元,则各购买多少套?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y元,设A品牌文具套装买了x包,请求出y与x之间的函数关系式.(3)若小王购买会员卡并用此卡按需购买1000套文具套装,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,若A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不亏本(运算结果取整数)?22.已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).23.如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A(﹣1,0)、B(3,0),与y轴负半轴交于点C.(1)若△ABD为等腰直角三角形,求此时抛物线的解析式;(2)a为何值时△ABC为等腰三角形?(3)在(1)的条件下,抛物线与直线y=x﹣4交于M、N两点(点M在点N的左侧),动点P从M点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点N,若使点P运动的总路径最短,求点P运动的总路径的长.2017年中招第一次模拟考试数学试卷答案一选择题:1.D2.C3.A4.B5.D6.C7.B8.B9.D10.C二填空题:11.﹣1,12.60,13.﹣.,14.2π﹣4.15.或15,16.(8分)解:原式=÷=•=,当x=+2时,原式===.解:(1)40÷40%=100名,则该县共调查了100名初中毕业生;(2)B的人数:100×30%=30名,C所占的百分比为:×100%=25%,补全统计图如图;(3)根据题意得:4500×40%=1800名,答:今年的初三毕业生中准备读普通高中的学生人数是1800.18.(9分)解:(1)连结CD,如图,∵AC是⊙O的直径,∴∠ADC=90°,∵E是BC的中点,∴DE=CE=BE;(2)DE是⊙O的切线.理由如下:连结OD,如图,∵BC为切线,∴OC⊥BC,∴∠OCB=90°,即∠2+∠4=90°,∵OC=OD,ED=EC,∴∠1=∠2,∠3=∠4,∴∠1+∠3=∠2+∠4=90°,即∠ODB=90°,∴OD⊥DE,∴DE是⊙O的切线;(3)当BC=2时,∵CA=CB=2,∴△ACB为等腰直角三角形,∴∠B=45°,∴△BCD为等腰直角三角形,∴DE⊥BC,DE=BC=1,∵OA=DE=1,AO∥DE,∴四边形AOED是平行四边形;∵OD=OC=CE=DE=1,∠OCE=90°,∴四边形OCED为正方形.故答案为ED=EC;2,正方形.19.(9分)解:(1)令一次函数y=kx+3中的x=0,则y=3,即点C的坐标为(0,3),∴AC=3﹣(﹣6)=9.∵S△CAP=AC•AP=18,∴AP=4,∵点A的坐标为(0,﹣6),∴点P的坐标为(4,﹣6).∵点P在一次函数y=kx+3的图象上,∴﹣6=4k+3,解得:k=﹣;∵点P在反比例函数y=的图象上,∴﹣6=,解得:n=﹣24.∴一次函数的表达式为y=﹣x+3,反比例函数的表达式为y=﹣.(2)令一次函数y=﹣x+3中的y=0,则0=﹣x+3,解得:x=,即点B的坐标为(,0).设点Q的坐标为(m,﹣m+3).∵△OCQ的面积是△BCO面积的2倍,∴|m|=2×,解得:m=±,∴点Q的坐标为(﹣,9)或(,﹣3).20解:如图所示,过点C作CD⊥AB,交AB的延长线于点D,由题意可知,∠CAD=30°,∠CBD=60°,设CD=x米,则BD=,AD=,∵AB=2米,AD=AB+BD,∴AD=2+BD,∴2+=,解得,x≈1.7即生命所在点C的深度是1.7米.21.解:(1)设小王够买A品牌文具x套,够买B品牌文具y套,根据题意,得:,解得:,答:小王够买A品牌文具600套,够买B品牌文具400套.(2)y=500+0.8[20x+25]=500+0.8=500+20000﹣4x=﹣4x+20500,∴y与x之间的函数关系式是:y=﹣4x+20500.(3)根据题意,得:﹣4x+20500=20000,解得:x=125,∴小王够买A品牌文具套装为125套、够买B品牌文具套装为875套,设A品牌文具套装的售价为z元,则B品牌文具套装的售价为(z+5)元,由题意得:125z+875(z+5)≥20000+8×1000,解得:z≥23.625,答:A品牌的文具套装每套定价不低于24元时才不亏本.22.解:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE,∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°∵BF=DF,∴∠DBF=∠BDF,∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF,同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°,∴DF=CF,且DF⊥CF.(2)(1)中的结论仍然成立.证明:如图,此时点D落在AC上,延长DF交BC于点G.∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB,∵AC=BC,∴AC﹣AD=BC﹣GB,∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形,∵DF=GF.∴DF=CF,DF⊥CF.(3)延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°,∵由旋转可以得出,∠CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE,∴∠DEF=∠HBF.∵F是BE的中点,∴EF=BF,∴△DEF≌△HBF,∴ED=HB,∵AC=,在Rt△ABC中,由勾股定理,得AB=4,∵AD=1,∴ED=BH=1,∴AH=3,在Rt△HAD中由勾股定理,得DH=,∴DF=,∴CF=∴线段CF的长为.23.解:(1)如图1,∵△ABD是等腰直角三角形,∴过点D作直线l∥y轴,直线l与x轴交于点I.∴AI=ID=IB=AB=2,∴D(1,﹣2),∴设y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a,∴a﹣2a﹣3a=﹣2,∴a=,∴y=x2﹣x﹣,(2)∵△ABC为等腰三角形,∴①AB=BC=4,∴OC==,∴﹣3a=﹣,∴a=,②AB=AC=4,∴OC==,∴C(0,﹣),∴﹣3a=﹣,∴a=.(3)如图2,∵抛物线与直线y=x﹣4交于M、N两点,∴,∴,,∴M(2,﹣),N(,﹣).作点M关于对称轴l的对称点G,点N关于x轴的对称点H,连接GH交l于E,x轴于F,∴EM=EH,FN=FH∴点P运动的总路径为GH,∵G(0,﹣),H(,),∴GH=.
本文标题:2017年河南省商丘市中考数学一模试卷
链接地址:https://www.777doc.com/doc-3873454 .html