您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 第28章锐角三角函数复习课
第28章锐角三角函数(复习课)教学目标通过对本章的复习,让学生学会将千变万化的实际问题转化为数学问题来解决的能力,培养学生用数学的意识。教学重点1.锐角三角函数的概念、特殊角的三角函数值2.互余角三角函数关系、3.同角三角函数关系.教学难点解直角三角形知识的应用一、基本概念1.正弦ABCacsinA=ca2.余弦bcosA=cb3.正切tanA=ba锐角A的正弦、余弦、正切、都叫做∠A的锐角三角函数.定义:如右图所示的Rt⊿ABC中∠C=90°,a=5,b=12,那么sinA=_____,tanA=______cosB=______,135125135cosA=______,1312练习1(利用定义解题)回味无穷定义中应该注意的几个问题:1.sinA,cosA,tanA,是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形).2.sinA,cosA,tanA,是一个完整的符号,表示∠A的三角函数,习惯省去“∠”号;3.sinA,cosA,tanA,是一个比值.注意比的顺序,且sinA,cosA,tanA,均﹥0,无单位.4.sinA,cosA,tanA,的大小只与∠A的大小有关,而与直角三角形的边长无关.5.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.sinA=cos(90°-A)=cosBcosA=sin(90°-A)=sinBS△ABC=cABCba同角的正弦余弦与正切之间的关系互余两个角的三角函数关系同角的正弦余弦平方和等于1练习2二、几个重要关系式sin2A+cos2A=1⑴已知:Rt△ABC中,∠C=90°∠A为锐角,且sinA=3/5,cosB=().3/5(2)cos245°+sin245°=(3)sin53°cos37°+cos53°sin37°=()1tanA=AAcossin1bcsinA=acsinB=absinC212121tanαcosαsinα60°45°30°角度三角函数三、特殊角三角函数值21231角度逐渐增大正弦值如何变化?正弦值也增大余弦值如何变化?余弦值逐渐减小正切值如何变化?正切值也随之增大思考锐角A的正弦值、余弦值有无变化范围?0sinA10cosA121222223333☆应用练习1.已知角,求值求下列各式的值2sin30°+3tan30°+tan45°=2+d3cos245°+tan60°cos30°=21.2.☆应用练习1.已知角,求值求锐角A的值2.已知值,求角1.已知tanA=,求锐角A.32.已知2cosA-=0,求锐角A的度数.3∠A=60°∠A=30°解:∵2cosA-=033∴2cosA=23∴cosA=∴∠A=30°☆应用练习1.已知角,求值确定值的范围2.已知值,求角1.在Rt△ABC中∠C=90°,当锐角A45°时,sinA的值()(A)0<sinA<(B)<sinA<1(C)0<sinA<(D)<sinA<13.确定值的范围23222223B(A)0<cosA<(B)<cosA<1(C)0<cosA<(D)<cosA<1212123232.当锐角A30°时,cosA的值()C☆应用练习1.已知角,求值确定角的范围2.已知值,求角3.确定值的范围(A)0°<∠A<30°(B)30°<∠A<90°(C)0°<∠A<60°(D)60°<∠A<901.当∠A为锐角,且tanA的值大于时,∠A()33B4.确定角的范围☆应用练习1.已知角,求值2.已知值,求角3.确定值的范围4.确定角的范围确定角的范围2.当∠A为锐角,且sinA=那么∠A()(A)0°<∠A<30°(B)30°<∠A<45°(C)45°<∠A≤60°(D)60°<∠A≤90°A1/5三边之间的关系a2+b2=c2(勾股定理);锐角之间的关系∠A+∠B=90º边角之间的关系(锐角三角函数)tanA=absinA=ac1、cosA=bcACBabc解直角三角形的依据lhα(2)坡度i=hl(1)仰角和俯角视线铅垂线水平线视线仰角俯角(3)方位角30°45°BOA东西北南α为坡角=tanα认识有关概念1(2007旅顺)一个钢球沿坡角31°的斜坡向上滚动了5米,此时钢球距地面的高度是(单位:米)()A.5cos31°B.5sin31°C.5tan31°D.5cot31°B2(2007滨州)梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A.sinA的值越大,梯子越陡B.cosA的值越大,梯子越陡C.tanA值越小,梯子越陡D.梯子陡的程度与∠A的三角函数值无关。A这里的特殊角指的是30°45°60°,只有放在直角三角形中才显示出它的特殊性,边之间就有了一定的特殊性.特殊角放在直角三角形中才特殊锐角三角函数的应用分析:∠A=60°,因而可考虑延长DC和AB,或延长BC和AD.当延长DC和AB后,已知条件AB或CD不是直角三角的边,因而延长BC和AD.(一)有直角及特殊角,而无直角三角形例2,已知:在△ABC中,∠B=45°,∠C=30°,AB=,求AC的长2解析:过A作AD⊥BC于D则AD=BD,又AB=∴AD=BD=1,∠C=30°AD⊥BC,∴AC=22(二)内角为特殊角例3、如图,小强在江南岸选定建筑物A,并在江北岸的B处观察,此时,视线与江岸BE所成的夹角是30°,小强沿江岸BE向东走了500m,到C处,再观察A,此时视线AC与江岸所成的夹角∠ACE=60°,根据小强提供的信息,你能测出江岸吗?若能,写出求解过程;若不能,请说明理由.•分析:知二角为特殊角,通过作辅助线构成直角三角形,且要把这二角都放在直角三角形,则可过A作BC的垂线.(三)二方位角为特殊角且在同一水平线上(一个内角及一个外角为特殊角)(1)解直角三角形的两种基本图形AABBCCDD(2)把数学问题转化成解直角三角形问题,如果示意图不是直角三角形,可添加适当的辅助线(垂线),画出直角三角形.(3)要注意积累常见模型以及方程思想的运用。总结X°6030°DB10CA101045°30°BCADxx10DAX60°45°BCX-10B45°C60°AX10101、已知tana=是锐角,则sina=,cosa=.2、若tan(α+10°)=,则锐角α的度是.3、如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么tan∠BAD′等于.4、如图,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,则CD的长为.1253巩固练习在涉及四边形问题时,经常把四边形进行适当分割,划分为三角形和特殊四边形,再借助特殊四边形的特征和直角三角形知识解决问题。
本文标题:第28章锐角三角函数复习课
链接地址:https://www.777doc.com/doc-3888892 .html