您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 15.1.2幂的乘方_课件
15.1.2幂的乘方和积的乘方活动1知识回顾口述同底数幂的乘法法则am·an=am+n(m、n都是正整数).同底数幂相乘,底数不变,指数相加.539926aa53)()(xx33)(xx432xxxaaaa432898a8x6x9x52a(1);(3);(5);(6).(2);(4);计算:;)(22232aaaaa;3333)3(22232⑴⑵⑶aaaaammmm3)((m是正整数).3.根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:表示什么?表示什么?表示什么?332323maa2..;3;523249a1.试一试:读出式子663m活动2manmmmnmaaaa个)(mnmmma个?)(nma对于任意底数a与任意正整数m,n,mna(乘方的意义)(同底数幂的乘法法则)(乘法的定义)mnnmaa)((m,n都是正整数).幂的乘方,底数,指数.不变相乘幂的乘方的运算公式你能用语言叙述这个结论吗?公式中的a可表示一个数、字母、式子等.例2:计算:(1)(103)5;(2)(a4)4;(3)(am)2;(4)-(x4)3.解:(1)(103)5=103Χ5=1015;(2)(a4)4=a4Χ4=a16;(3)(am)2=amΧ2=a2m;(4)-(x4)3=-x4Χ3=-x12.活动3计算:(1)(103)3;(2)(x3)2;(3)-(xm)5;(4)(a2)3∙a5;⑸23)(y⑹43])[(ba运算种类公式法则中运算计算结果底数指数同底数幂乘法幂的乘方乘法乘方不变不变指数相加指数相乘mnnmaa)(nmnmaaa活动4下列各式对吗?请说出你的观点和理由:(1)(a4)3=a7()(2)a4a3=a12()(3)(a2)3+(a3)2=(a6)2()(4)(-x3)2=(-x2)3()××××活动5幂的乘方的逆运算:(1)x13·x7=x()=()5=()4=()10;(2)a2m=()2=()m(m为正整数).20x4x5x2ama2mnnmmnaaa)()(幂的乘方法则的逆用活动6已知,44•83=2x,求x的值.9822172334234)2()2(84解:17x所以活动71.已知3×9n=37,求:n的值.2.已知a3n=5,b2n=3,求:a6nb4n的值.3.设n为正整数,且x2n=2,求9(x3n)2的值.4.已知2m=a,32n=b,求:23m+10n.温故知新1.幂的乘方的法则nmnmaa)((m、n都是正整数)幂的乘方,底数不变,指数相乘.语言叙述符号叙述.2.幂的乘方的法则可以逆用.即nmmnaa)(mna)(3.多重乘方也具有这一性质.如pnmpnmaa])[((其中m、n、p都是正整数).公式中的a可表示一个数、字母、式子等.计算:(2×3)2与22×32,你会发现什么?填空:62364×936=∵(2×3)2==22×32==∴(2×3)222×32结论:(2×3)2与22×32相等观察、猜想:(ab)3与a3b3是什么关系呢?(ab)3=说出以上推导过程中每一步变形的依据。(ab)·(ab)·(ab)=(aaa)·(bbb)=a3b3乘方的意义乘方的意义乘法交换律、结合律猜想:(ab)n=anbn(n为正整数)(ab)n=(ab)·(ab)·····(ab)n个ab=(a·a·····a)·(b·b·····b)n个an个b=anbn这说明以上猜想是正确的。证明:思考:积的乘方(ab)n=?积的乘方语言叙述:积的乘方等于把积的每个因式分别乘方,再把所得的幂相乘。推广:三个或三个以上的积的乘方等于什么?(abc)n=anbncn(n为正整数)(ab)n=anbn(n为正整数)例1:计算:(1)(-3x)3(2)(-5ab)2(3)(xy2)2(4)(-2xy3z2)4解:(1)原式=(2)原式=(3)原式=(4)原式==-27x3=25a2b2=x2y4=16x4y12z8(-3)3x3(-5)2a2b2x2(y2)2(-2)4x4(y3)4(z2)4注意:(1)负数乘方的符号法则。(2)积的乘方等于积中“每一个”因式乘方的积,防止有的因式漏乘方错误。(3)在计算(-2xy3z2)4=(-2)4x4(y3)4(z2)4=16x4y12z8的过程中,应把y3,z2看作一个数,再利用积的乘方性质进行计算。(1)(ab2)3=ab6()×××(2)(3xy)3=9x3y3()×(3)(-2a2)2=-4a4()(4)-(-ab2)2=a2b4()判断:1)7337()73()37()5(555()√1、计算:(1)(ab)8(2)(2m)3(3)(-xy)5(4)(5ab2)3(5)(2×102)2(6)(-3×103)3(2)8m3(3)–x5y5(4)125a3b6(5)4×104(6)-27×109答案:(1)a8b82、计算:(1)(-2x2y3)3答案(2)81a12b8c4答案(1)-8x6y9(2)(-3a3b2c)41计算:a3·a4·a+(a2)4+(-2a4)2解:原式=a3+4+1+a2×4+(-2)2·(a4)2=a8+a8+4a8=6a8试一试:2计算:2(x3)2·x3-(3x3)3+(5x)2·x7解:原式=2x6·x3-27x9+25x2·x7注意:运算顺序是先乘方,再乘除,最后算加减。=2x9-27x9+25x9=0小结:1、本节课的主要内容:幂的运算的三个性质:am·an=am+n(am)n=amn(ab)n=anbn(m、n都为正整数)2、运用积的乘方法则时要注意什么?每一个因式都要“乘方”,还有符号问题。积的乘方祝同学们圣诞节快乐!WishingyouandyoursamerryChristmasthisholidayseason.
本文标题:15.1.2幂的乘方_课件
链接地址:https://www.777doc.com/doc-3897185 .html