您好,欢迎访问三七文档
第9章氮氧化物污染控制1.氮氧化物的性质及来源2.燃烧过程中氮氧化物的形成机理3.低氮氧化物燃烧技术4.烟气脱硝技术§1氮氧化物的性质及来源1952年,洛杉矶上空笼罩在浅蓝色的烟雾之中,这是在强烈阳光照射下,污染物发生的化学反应,400多名老人因此丧失了生命.附近农作物一夜之间严重受害;6.5万公顷的森林,29%严重受害,33%中等受害,其余38%也受轻度损害。美国光化学烟雾对农业和林业的危害曾波及27个州。之后,日本、英国、德国、澳大利亚先后出现过光化学污染,我国兰州、上海也发生过类似的光化学烟雾事件。氮氧化物(NOx),普通人并不熟悉的名字,它,就是上述光化学烟雾的罪魁祸首,它还会造成大气层中臭氧含量减少、引发硝酸雨,致使人们感染气喘病、肺水肿、鼻炎、头痛等疾病。据测算,每燃烧一吨煤,就要产生5-30kg氮氧化物。可我国能源结构中有70%-80%由煤的燃烧来提供。煤炭高温燃烧成为我国排放氮氧化物的主要来源之一。§1氮氧化物的性质及来源就全球来看,空气中的氮氧化物主要来源于天然源,但城市大气中的氮氧化物大多来自于燃料燃烧,即人为源,如汽车等流动源,工业窑炉等固定源。据计算,各种燃料燃烧产生的氮氧化物量为:1吨天然气:6.35公斤1吨石油:9.1-12.3公斤1吨煤:8-9公斤而以汽油、柴油为燃料的汽车,尾气中氮氧化物的浓度相当高。在非采暖期,北京市一半以上的氮氧化物来自机动车排放。氮氧化物与空气中的水结合最终会转化成硝酸和硝酸盐,随着降水和降尘从空气中去除。硝酸是酸雨的原因之一;它与其它污染物在一定条件下能产生光化学烟雾污染。§1氮氧化物的性质及来源NOx包括N2O、NO、N2O3、NO2、N2O4、N2O5大气中NOx主要以NO、NO2的形式存在氮氧化物(NOX)种类很多,造成大气污染的主要是一氧化氮(NO)和二氧化氮(NO2),因此环境学中的氮氧化物一般就指这二者的总称。NOx的性质N2O:单个分子的温室效应为CO2的200倍,并参与臭氧层的破坏NO:大气中NO2的前体物质,形成光化学烟雾的活跃组分不同浓度的NO2对人体健康的影响浓度(ppm)影响1.0闻到臭味5.0闻到很强烈的臭味10-15眼、鼻、呼吸道受到强烈刺激501分钟内人体呼吸异常,鼻受到刺激803-5分钟内引起胸痛100-150人在30-60分钟就会因肺水肿死亡200以上人瞬间死亡一些大城市对空气中NO含量的测定NO含量NO2含量日最大含量0.13-0.37ppm0.05-0.12ppm月最小含量0.01-0.04ppm0.01-0.04ppm月最大含量0.05-0.11ppm0.04-0.06ppm年平均含量0.03-0.07ppm0.02-0.05ppmNO2浓度的日变化00.20.40.60.811.21.41234567891011121314151617时间(h)NO2(ppm)系列1§1氮氧化物的性质及来源NOx的性质(续)NO2:强烈刺激性,来源于NO的氧化,酸沉降NOx的来源固氮菌、雷电等自然过程(5×108t/a)人类活动(5×107t/a)燃料燃烧占90%95%以NO形式,其余主要为NO2§1氮氧化物的来源§1氮氧化物的来源§2燃烧过程NOx的形成机理在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%,产生机理一般分为如下三种:燃料型NOx燃料中的固定氮生成的NOx热力型NOx高温下N2与O2反应生成的NOx瞬时NO低温火焰下由于含碳自由基的存在生成的NO一.热力型NOx形成的热力学1.热力型NOx的生成浓度与温度的关系产生NO和NO2的两个重要反应上述反应的化学平衡受温度和反应物化学组成的影响平衡时NO浓度随温度升高迅速增加222221122NONONOONO1.热力型NOx的生成浓度与温度的关系01002003004005006007008001600165017001750180018501900温度(摄氏度)NO浓度(ppm)系列1一.热力型NOx形成的热力学平衡常数和平衡浓度一.热力型NOx形成的热力学2.NO与NO2之间的转化平衡常数和平衡浓度一.热力型NOx的形成的热力学上述数据说明:1)室温条件下,几乎没有NO和NO2生成,并且所有的NO都转化为NO22)800K左右,NO与NO2生成量仍然很小,但NO生成量已经超过NO23)常规燃烧温度(1500K)下,有可观的NO生成,但NO2量仍然很小一.热力型NOx形成的热力学3.烟气冷却对NO和NO2平衡的影响烟气冷却过程中,根据热力学计算,NOx应主要以NO2的形式存在,但实际90%~95%的NOx以NO的形式存在,主要原因在于动力学控制NO/NOxRatioboilervehiclesnaturegas0.9~1.0internalcomb.engine0.99~1.0coal0.95~1.06#fueloil0.96~1.0dieselengine0.77~1.0二.热力型NOx形成的动力学——Zeldovich(捷里多维奇)模型燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(Zeldovich)反应式表示。随着反应温度T的升高,其反应速率按指数规律增加。当T1500oC时,NO的生成量很少,而当T1500oC时,T每增加100oC,反应速率增大6-7倍。二.热力型NOx形成的动力学——Zeldovich(捷里多维奇)模型ONOONNNONONONO22222222212NOONONOON在高温下总生成式为NO生成的总速率121222NONON(4)NONOO(5)2OM2OM(3)424525d[NO][O][N][N][NO][N][O][O][NO](6)dkkkkt二.热力型NOx形成的动力学——Zeldovich(捷里多维奇)模型三.瞬时反应型(快速型)快速型NOx是1971年Fenimore(费尼莫尔)通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx。由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms,所生成的与炉膛压力0.5次方成正比,与温度的关系不大。上述两种氮氧化物都不占NOx的主要部分,不是主要来源。四.燃料型NOx的形成由燃料中氮化合物在燃烧中氧化而成。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600-800oC时就会生成燃料型,它在煤粉燃烧NOx产物中占60-80%。在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN和等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型的形成也由气相氮的氧化(挥发份)和焦炭中剩余氮的氧化(焦炭)两部分组成。燃料中氮分解为挥发分N和焦炭N的示意图煤粒N挥发分挥发分N焦炭焦炭NNON2N2热解温度对燃料N转化为挥发分N比例的影响0102030405060708090050100150200300400500600700800时间(ms)挥发分N/燃料N(%)系列1系列2系列3系列41200oC1000oC800oC600oC煤粉细粒对燃料N转化为挥发分N比例的影响0102030405060708090050100150200300400500600700800时间(ms)挥发分N/燃料N(%)120-150目11-120目70-100目过量空气系数对燃料N转化为挥发分N比例的影响01020304050607080900100200300400500600700800时间(ms)挥发分N/燃料N(%)余气系数=0.6余气系数=0.8余气系数=1.2如上所述,NOx的生成和破坏规律十分复杂,而影响NOx转化率的因素又很多,所以对燃料型NOx的转化率进行理论计算非常困难;但目前已建立数百个与NOx生成规律及其破坏有关的化学反应在内的数学模型。日本丰桥大学在试验研究的基础上得出燃料型NOx的转化率CR和燃料中含氮量N(干基)、挥发分含量V(干基)、过量空气系数α、燃烧时的最高温度Tmax(oC)和燃烧时氧的浓度RO2的经验公式:CR=4.0710-1-1.2810-1N+3.3410-4V2(α-1)+5.5510-4Tmax+3.5010-3RO2燃料型NOx的转化率CR定义燃烧过程中最终生成的NO浓度和燃料中氮全部转化成NO时的浓度比为燃料型NOx的转化率CRCR=【最终生成的NO浓度】÷【燃料全部转化成NO的浓度】试验研究表明,影响CR的主要因素是煤种特性以及炉内的燃烧条件。从热力型、燃料型和快速型三种NOx生成机理可以得出抑制NOx生成和促使破坏NOx的途径,图中还原气氛箭头所指即抑制和促使NOx破坏的途径氧化气氛空气N2NOx杂环氮化物烃生成物CH,CH2烃生成物中结合的氮氰(HCN,CN)氰氧化物(OCN,HNCO)氨类(NH3,NH2,NH,N)N2ONOxHN2还原气氛空气中的氮燃料中氮的转换NO再燃烧Zeldovich机理NOx的形成§3低NOx燃烧技术凡通过改变燃烧条件来控制燃烧关键参数,以抑制生成或破坏已生成的达到减少排放的技术称为低燃烧技术。煤的燃烧方式对NO排放的影响探讨生成规律可以知道,NO的生成及破坏与以下因素有关:(a).煤种特性,如煤的含氮量,挥发份含量,空气-燃料比等。(b)燃烧区温度及其分布。(c)燃烧区温度及其分布.炉膛内反应区烟气的气氛,即烟气内氧气,氮气,NO和CHi的含量。(d)燃烧器形状.燃料及燃烧产物在火焰高温区和炉膛内的停留时间。不同燃煤设备所生成的NOx的原始排放值及为达到环境保护标准所需的NOx降低率020406080100120020040060080010001200140016001800NOx排放值(mg/m3)NOx降低率(%)循环床链条炉抛煤机炉鼓泡床固态除渣煤粉炉液态除渣煤粉炉举例:固态除渣煤粉炉,当要求NOx排放值为650mg/m3时,所需的NOx降低率为36%。低NOx排放主要技术措施1.改变燃烧条件:包括低过量空气燃烧法,空气分级燃烧法,燃料分级燃烧法,烟气再循环法。2.炉膛喷射脱硝:包括喷氨及尿素,喷入水蒸汽,喷入二次燃料。3烟气脱硝:(1)干法脱硝。(烟气催化脱硝,电子束照射烟气脱硝)(2).湿法脱硝。低过量空气燃烧:使燃烧过程在尽可能接近理论空气量的条件下进行。但如果氧含量(浓度)3%时,会使CO浓度剧增,使热效率降低。此外,低氧浓度会使炉膛内的某些地区成为还原性气氛,从而降低灰熔点引起炉壁结渣与腐蚀。01234567890.80.911.11.21.31.4一次风比例飞灰含碳量012345678910烟气中NOx含量§3低NOx燃烧技术一.传统低NOx燃烧技术1.低氧燃烧降低NOx的同时提高锅炉热效率CO、HC、碳黑产生量增加传统低NOx燃烧技术2.降低助燃空气预热温度燃烧空气由27oC预热到315oC,NO排放量增加3倍传统低NOx燃烧技术3.烟气循环燃烧降低氧浓度和燃烧区温度-主要减少热力型NOx传统低NOx燃烧技术4.两段燃烧技术第一段:氧气不足,烟气温度低,NOx生成量很小第二段:二次空气,CO、HC完全燃烧,烟气温度低二.先进的低NOx燃烧技术原理:低空气过剩系数运行技术+分段燃烧技术1.炉膛内整体空气分级的低NOx直流燃烧器炉壁设置助燃空气(OFA,燃尽风)喷嘴类似于两段燃烧技术二.先进的低NOx燃烧技术2.空气分级的低NOx旋流燃烧器一次火焰区:富燃,含氮组分析出但难以转化二次火焰区:燃尽CO、HC等二.先进的低NOx燃烧技术3.空气/燃料分级的低NOx燃烧器空气和燃料均分级送入炉膛一次火焰区下游
本文标题:氮氧化物污染控制3
链接地址:https://www.777doc.com/doc-3915002 .html