您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 高等数学习题详解-第3章--导数与微分
-1-习题3-11.设某产品的总成本C是产量q的函数:2+1Cq,求(1)从100q到102q时,自变量的改变量q;(2)从100q到102q时,函数的改变量C;(3)从100q到102q时,函数的平均变化率;(4)总成本在100q处的变化率.解:(1)q=102-100=2,(2)(102)(100)CCC=22102+1)-(100+1)=404((3)函数的平均变化率为00()()4042022CqqCqCqq.(4)总成本在100q处的变化率为100()(100)lim100qCqCq22100100100limlim(100)200100qqqqq2.设()2fxx,根据导数定义求(4)f.解44()(4)224(4)limlim44xxfxfxfxx42(2)1lim2(2)(2)xxxx3.根据函数导数定义,证明(cos)sinxx.证根据函数导数定义及“和差化积”公式,得0cos()cos(cos)limhxhxxh0sin2limsin()22hhhxhsinx.4.已知()fak,求下列极限:(1)0()()lim;xfaxfax(2)0()()limxfaxfaxx解(1)00()()()()limlim();xxfaxfafaxfafakxx(2)0()()limxfaxfaxx=0()()()()limxfaxfafafaxx00()()()()limlimxxfaxfafaxfaxx()()2fafak5.已知.0)0(f(0)1f,计算极限0(2)lim.xfxx解00(2)(2)(0)lim=2lim2(0)22xxfxfxffxx6.求下列函数的导数:(1)5yx;(2)yxx;-2-(3)xye;(4)2xxye;(5)lgyx;(6)sin4y解(1)545xx;(2)31443()()4xxxx;(3)1()lnxxxeeee;(4)(2)[(2)](2)ln(2)2(ln21)xxxxxxeeeee;(5)1(lg)ln10xx;(6)(sin)047.问函数,,sin)(xxxf00xx在0x处是否可导?如可导,求其导数.解考察0x处的左、右导数(0)f=0(0)(0)limhfhfh0sinlim1,hhh(0)f=0(0)(0)limhfhfh0lim1hhh,所以,函数在0x处的可导,且(0)1f.8.讨论函数2,0()2,011,1xxfxxxxx在点0x和1x处的连续性与可导性.解(1)考察0x处的左、右导数(0)f=0(0)(0)limhfhfh0lim1,hhh(0)f=0(0)(0)limhfhfh02lim2hhh,所以,函数在0x处不可导;又00lim()lim()0(0)xxfxfxf,所以,函数在0x处连续.(2)考察1x处的左、右导数(1)f=1()(1)lim1xfxfx122lim2,1xxx(1)f=1()(1)lim1xfxfx21(1)2lim2,1xxx所以,函数在1x处的可导,且(1)2f.9.求等边双曲线xy1在点2,21处的切线的斜率,并写出在该点处的切线方程和法线方程.-3-解由导数的几何意义,得切线斜率为31/21xxkyx1/2214xx.所求切线方程为,2142xy即.044yx法线方程为,21412xy即.01582yx10.求曲线lnyx在点,1e处的切线与y轴的交点.解曲线lnyx在点,1e处的切线斜率为111xxekyxe故切线方程为11()yxee.上式中,令0x,得0y.所以,曲线lnyx在点,1e处的切线与y轴的交点为0,0.习题3-21.求下列函数的导数:(1)23sinyxxx;(2)6321xxyx;(3)sinln2stt;(4)coslnyxxx(5)11xyx;(6)21xeyx解(1)y23cosxx;(2)57332422()2()()353yxxxxxx;(3)()sin(sin)0stttt=sincos2tttt;(4)cosln(cos)lncos(ln)yxxxxxxxxxcoslnsinlncosxxxxxx(5)22(1)(1)(1)(1)2(1)(1)xxxxyxx;(6)22222()(1)(1)1(1)xxxeexxeyxx222222(1)2(1)(1)(1)xxxexxexexx.2.求下列函数在给定点处的导数:(1)arccos,yxx求12xy;(2)tansec,求4;dd-4-(3)33()ln1xxefxe,求(0)f.解(1)yarccos+(arccos)xxxx=2arccos1xxx12xy=112arccos2114=133(2)2dtansecsectand4d1221d4=1+22(3)331()ln(1)22xfxxe,333()22(1)xfxe故(0)f333(0)22(11)4f3.曲线32yxx上哪一点的切线与直线210xy平行?解231yx,令2y,即231=2x,得=1x或=-1x,代入原曲线方程都有:2y,故所求点为:1,2或-1,2.4.求下列函数的导数:(1)xysinln;(2)310(1)yx;(3)23(cos)yxx;(4)322ln1xyx;(5)22sinsinyxx;(6)2tan[ln(1)]yx;(7)1sin2xy;(8)lnxxye;(9)22ln()yxxa;(10))0(arcsin22222aaxaxaxy解(1)y1sinsinxxcoscotsinxxx;(2)39323910(1)(1)30(1)yxxxx;(3)2223(cos)(cos)yxxxx223(cos)(12cos(sin))xxxx223(cos)(1sin2)xxx;(4)322211lnln(2)ln(1)321xyxxxy22111(1)3(2)21xxx=213(2)1xxx;(5)2222sincossinsincos2yxxxxxx222sin2sin2sincosxxxxx;-5-(6)222sec[ln(1)][ln(1)]yxx=222222212sec[ln(1)](1)sec[ln(1)]11xxxxxx;(7)1sin12ln2(sin)xyx=1sin112ln2cos()xxx1sin22ln21cosxxx;(8)ln()lnxxxyexln2ln(ln)lnxxxxxxex=ln2ln1lnxxxex;(9)22221()yxxaxxa2222221()(1)2xaxxaxa22221(1)xxxaxa=221xa;(10)222222221112221xayaxaaxxa222222221122xaaxaxax=22ax.5.已知)(uf可导,求下列函数的的导数:(1)(csc)yfx;(2)(tan)tan[()]yfxfx.解(1)(csc)(csc)yfxx=(csc)csccotfxxx(2)2(tan)(tan)sec[()]()yfxxfxfx=22sec(tan)sec[()]()xfxfxfx.习题3-31.求下列由方程所确定的隐函数()yyx的导数ddyx:(1)4444xyxy;(2);sincos()0yxxy;(3)sin0xyeexy;(4)22arctanlnyxyx.解(1)方程两边同时对自变量x求导,得33dd4444ddyyxyyxxx,整理得33d()dyyxxyx,故33ddyxyxyx;(2)ddcossinsin()(1)0ddyyyxxxyxx整理求得ddyx=sin()cossin()sinxyyxxyx(3)ddcos()0ddxyyyeexyyxxx求得ddyx=coscosxyeyxyexxy-6-(4)2222111.(22)21()xyyxyyyxxyx整理求得2222xyyxyyxyxy故ddyx=xyxy.2.求曲线3335xxyy在点(1,1)处的切线方程和法线方程.解方程两边同时对自变量x求导,得2233330xyxyyy解得ddyx=22yxyx,在点(1,1)处,(1,1)1y,于是,在点(1,1)处的切线方程为11(1)yx,即20xy,法线方程为11(1)yx即yx.3.用对数求导法求下列各函数的导数ddyx:(1)sin(0)xyxx;(2)axxyxax;(3)(1)(2)(3)(4)xxyxx;(4)(sin)(cos)yxxy.解(1)等式两边取对数lnsinlnyxx两边对x求导得11coslnsin,yxxxyx故sind1coslnsindxyxxxxxx.(2)1lnaxxyaxaax1lnln1axxaxaaxxx(3)1ln(1)ln(2)ln(3)ln(4)2yxxxx11111121234yyxxxx得1(1)(2)11112(3)(4)1234xxyxxxxxx.(4)lnsinlncosyxxylnsincotlncostanyxyxyxyyddyx=lncoscottanlnsinyyxxyx4.求下列参数方程所确定的函数的导数ddyx:-7-(1)221xttyt;(2)33cossinxaya.解(1)d()d()yytxxt212tt(2)22d()3sincosd()3cos(sin)yyaxxa=tan5.求椭圆6cos4sinxtyt在4t相应点处的切线方程.解d()d()yytxxt4sin4cos2cot6sin36costtttt.4t时,切线斜率为4d2d3tyx,()324x,()224y.故所求切线方程为222(32)3yx.习题3-41.求函数2xy当x由1改变到1.005的微分.解因为dd2d,yyxxx由题设条件知1x,d1.00510.005xx故所求微分为d210.0050.01.y2.求函数sin2yx在0x处
本文标题:高等数学习题详解-第3章--导数与微分
链接地址:https://www.777doc.com/doc-3921766 .html