您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 测试技术课后题答案1信号描述
1习题11.1求题图1-2双边指数函数的傅里叶变换,双边指数函数的波形如图所示,其数学表达式为0t题图1-2双边指数函数解:xt()是一个非周期信号,它的傅里叶变换即为其频谱密度函数,按定义式求解:220)π2j(0)π2j(0π2j0π2jπ2j)π2(2π2j1π2j1ddddd)()(faafafateteteeteetetxfXtfatfatftatftatf1.2求题图1-1周期三角波的傅里叶级数(三角函数形式和复指数形式),并画出频谱图。周期三角波的数学表达式为202022)(TttTAAtTtTAAtxxt()AT20T2t题图1.2周期性三角波解:将)(tx展开成三角函数形式的傅里叶级数,求其频谱。计算傅里叶系数:∵)(tx是偶函数∴0nb)0(00)(atteetxatat000x(t)2221d)(12/2/0ATATttxTaTT2/0022/002/002/2/0dcos8dcos)2(4dcos)2(4dcos)(2TTTTTnttntTAttntTATttntTAATttntxTatnntnntnt0202000cos10sin11cos于是,有2/00202002)cos1sin(8TntnntnntTAa...6,4,2...5,3,10π422nnnA由此得)(tx的三角函数形式傅里叶级数展开上展开式为tnnAAtxn0,3,122cos1π42)(若取)sin()(010nnntnAatxn次谐波分量的幅值2222π4nAbaAnnnn次谐波分量的相位2πarctannnnba画出)(tx的频谱如题图1.2(b)所示。将)(tx展开成复数形式的傅里叶级数,求其频谱。计算傅里叶系数2d)(1220AttxTcTT220220022jdcos)(1d)sin)(cos(1d)(10TTTTTTtnnttntxTttnjtntxTtetxTc...6,4,2...5,3,10π222nnnA3An42A492A4252A4492A4812A0030507090nπ/2π/2π/2π/2π/20030507090题图1.2(b)由此得)(tx的复指数形式傅里叶级数展开上展开式为tnnenAAtx0j,...5,3,1221π22)(n次谐波分量的幅值22π2nAccnnn次谐波分量的相位00πarctanπarctannnababnnnnn画出xt()的频谱如题图1.2(c)所示。1-3求正弦信号)sin()(taAtx的绝对均值x,均方根值)(rmstx及概率密度函数p(x)。解π2cosπdsin2d)sin(1d)(12/02/02/2/2/2/AatAtatTAtatATttxTTTTTTTx42d22cos1dsin12020222AtatTAtatATTTxAtxx22)(2rmsAn22A292A2252A2492A2812A9070503000030507090n0305070909070503000-----题图1.2(c)取taAtxsin)(有tatAaxdcosdatAatAaTxTtxp2sin1π1cos12dd2)(22π1xA1.4求被矩形窗函数截断的余弦函数t0cos(题图1.4)的频谱,并作频谱图。TtTtttx0cos)(0解TTTtttttetX00j0dcoscos2dcos)(tttTd])cos()[cos(0000000])sin[(])sin[(TT])c[(sin])c[(sin00TTTT5题图1.4或者,tetXTTtdcos)(j0teeTTttd)(21)j()j(00])c[(sin])c[(sin00TTTT1.5单边指数函数)0,0()(tAetxt与余弦振荡信号tty0cos)(的乘积为z(t)=x(t)y(t),在信号调制中,x(t)叫调制信号,y(t)叫载波,z(t)便是调幅信号。若把z(t)再与y(t)相乘得解调信号w(t)=x(t)y(t)z(t)。求调幅信号z(t)的傅里叶变换并画出调幅信号及其频谱。求解调信号w(t)的傅里叶变换并画出解调信号及其频谱。解:首先求单边指数函数)0,0()(taAetxat的傅里叶变换及频谱0π2jπ2jdd)()(teeAtetxfXtftatf0)π2j(0)π2j(π2jtfatfaefaAdteA22)π2(π2jπ2jfafaAfaA22)π2()(faAfX余弦振荡信号tfty0π2cos)(的频谱)]()([21)(00fffffY利用δ函数的卷积特性,可求出调幅信号)()()(tytxtz的频谱)]()([21)()()()(00fffffXfYfXfZ6))](π2[1)](π2[1(2202202ffaffaAxt()Xf()AA/a0t0faa’x(t)Yf()00tf00f0fbb’zt()Zf()AaA20tf00f0fcc’题图1.5a调幅信号及其频谱求解调信号w(t)的傅里叶变换并画出解调信号及其频谱。利用δ数的卷积特性,求出调幅信号)()()()(tytytxtw的频谱,见题图1,5b。))π2(2)]2(π2[1)]2(π2[1(4)]()([21)()()()(2220220200faffaffaAfffffZfYfZfWWf()aA220ff00f020ff题图1.5b解调信号频谱7若f0足够大,从解调信号频谱图中区间(-f0,f0)的图像可恢复原信号的波形,图略。1-5求三角窗函数的频谱,并作频谱图。题图1-5解:20,202,2)(TttTAAtTtTAAtxttttxtetxXtd)sinj)(cos(d)()(j2/02/0dcos4dcos)2(2TTtttTAtttTAAttttcos10sin11cos2于是,有)12(cos4)cos1sin(4)(222/022TTAtttTAXT)4(csin2)4()4(sin2222TATTTAT或)2π(csin2)(2fTATfX1-7求用单位脉冲序列g(t)对单边指数衰减函数y(t)采样(题图1-7)的频谱,并作频谱图。8x(t)10tT04T03T02T0题图1.70,00,00)()()(0taetatynTttgatn解:)(1)(00nTnfTfG22)π2(1)(affYnSaTnfTfGfYfY22020)/(π411)()()(
本文标题:测试技术课后题答案1信号描述
链接地址:https://www.777doc.com/doc-3939688 .html