您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 高中化学奥林匹克竞赛辅导讲座:第7讲《化学反应速率与化学平衡》
-1-高中化学奥林匹克竞赛辅导讲座第7讲化学反应速率与化学平衡【竞赛要求】反应速率基本概念。反应级数。用实验数据推求反应级数。一级反应积分式及有关计算(速率常数、半衰期、碳-14法推断年代等等)。阿累尼乌斯方程及计算(活化能的概念与计算;速率常数的计算;温度对速率常数影响的计算等)。活化能与反应热的关系。反应机理一般概念。推求速率方程。催化剂对反应影响的本质。标准自由能与标准平衡常数。平衡常数与温度的关系。平衡常数与转化率。利用平衡常数的计算。热力学分解温度(标态与非标态)。克拉贝龙方程及其应用(不要求微积分)。【知识梳理】一、化学反应速率(一)反应速率及其表示方法在化学反应中,某物质的浓度(物质的量浓度)随时间的变化率称反应速率。反应速率只能为正值,且并非矢量。1、平均速率用单位时间内,反应物浓度的减少或生成物浓度的增加来表示。=tc(7-1)当△c为反应物浓度的变化时,取负号;△c为生成物浓度的变化时,取正号。如:2N2O54NO2+O2反应前浓度/mol·dm-32.1000100s后浓度/mol·dm-31.950.300.075浓度变化(△c)/mol·dm-3–0.150.300.075变化所需时间(△t)/s10052ON=–tcON52=–10015.0=1.5×10-3mol·dm-3·s-12NO=tcNO2=10030.0=3.0×10-3mol·dm-3·s-12O=tcO2=100075.0=7.5×10-4mol·dm-3·s-1显然,以上计算所得的反应速率是在时间间隔为△t时的平均速率,他们只能描述在一定时间间隔内反应速率的大致情况。2、瞬时速率若将观察的时间间隔△t缩短,它的极限是△t0,此时的速率即为某一时刻的真实速率——瞬时速率:-2-对于下面的反应来说,aA+bB=gG+hH其反应速率可用下列任一表示方法表示:–dtdcA,–dtdcB,dtdcG,dtdcH注意:这几种速率表示法不全相等,但有下列关系:–a1·dtdcA=–b1·dtdcB=g1·dtdcG=h1·dtdcH(7-3)瞬时速率可用实验作图法求得。即将已知浓度的反应物混合,在指定温度下,每隔一定时间,连续取样分析某一物质的浓度,然后以c–t作图。求某一时刻时曲线的斜率,即得该时刻的瞬时速率。(二)反应速率理论简介1、碰撞理论化学反应的发生,总要以反应物之间的接触为前提,即反应物分子之间的碰撞是先决条件。没有粒子间的碰撞,反应的进行则无从说起。看如下计算数据。有反应:2HI(g)→H2(g)+I2(g)反应物浓度:10-3mol·dm-3(不浓)反应温度:973K计算结果表明,每s每dm3的体积内,碰撞总次数为:3.5×1028次计算反应速率为:=3.5×1028/6.02×1023=5.8×104mol·dm-3·s-1实际反应速率为:1.2×10-6mol·dm-3·s-1相差甚远,原因何在?(1)有效碰撞看来,并非每一次碰撞都发生预期的反应,只有非常少非常少的碰撞是有效的。首先,分子无限接近时,要克服斥力,这就要求分子具有足够的运动速度,即能量。具备足够的能量是有效碰撞的必要条件。一组碰撞的反应物的分子的总能量必须具备一个最低的能量值,这种能量分布符合从前所讲的分布原则。用E表示这种能量限制,则具备E和E以上的分子组的分数为:RTEef(7-4)其次,仅具有足够能量尚不充分,分子有构型,所以碰撞方向还会有所不同,如反应:NO2+CO=NO+CO2的碰撞方式有:△t0瞬时=lim(tc)=dtdc(7-2)-3-显然,(a)种碰接有利于反应的进行,(b)种以及许多其它碰撞方式都是无效的。取向适合的次数占总碰撞次数的分数用p表示。若单位时间内,单位体积中碰撞的总次数为Zmol,则反应速率可表示为:=Zpf(7-5)其中,p称为取向因子,f称为能量因子。或写成:=ZpRTEe(7-6)(2)活化能和活化分子组将具备足够能量(碰撞后足以反应)的反应物分子组,称为活化分子组。从(7-6)式可以看出,分子组的能量要求越高,活化分子组的数量越少。这种能量要求称之为活化能,用Ea表示。Ea在碰撞理论中,认为和温度无关。Ea越大,活化分子组数则越少,有效碰撞分数越小,故反应速率越慢。不同类型的反应,活化能差别很大。如反应:2SO2+O2=2SO3Ea=251kJ·mol-1N2+H2=2NH3Ea=175.5kJ·mol-1而中和反应:HCl+NaOH=NaCl+H2OEa≈20kJ·mol-1分子不断碰撞,能量不断转移,因此,分子的能量不断变化,故活化分子组也不是固定不变的。但只要温度一定,活化分子组的百分数是固定的。2、过渡状态理论(1)活化络合物当反应物分子接近到一定程度时,分子的键连关系将发生变化,形成一中间过渡状态,以NO2+CO=NO+CO2为例:N—O部分断裂,C—O部分形成,此时分子的能量主要表现为势能。称活化络合物。活化络合物能量高,不稳定。它既可以进一步发展,成为产物;也可以变成原来的反应物。于是,反应速率决定于活化络合物的浓度,活化络合物分解成产物的几率和分解成产物的速率。过渡态理论,将反应中涉及到的物质的微观结构和反应速率结合起来,这是比碰撞理论先进的一面。然而,在该理论中,许多反应的活化络合物的结构尚无法从实验上加以确定,-4-加上计算方法过于复杂,致使这一理论的应用受到限制。(2)反应进程—势能图应用过渡态理论讨论化学反应时,可将反应过程中体系势能变化情况表示在反应进程—势能图上。以NO2+CO=NO+CO2为例:A反应物的平均能量;B活化络合物的能量;C产物的平均能量反应进程可概括为:(a)反应物体系能量升高,吸收Ea;(b)反应物分子接近,形成活化络合物;(c)活化络合物分解成产物,释放能量Ea’。Ea可看作正反应的活化能,是一差值;Ea’为逆反应的活化能。由盖斯定律:①+②得NO2+CO→NO+CO2所以,△rH=△rH1+△rH2=Ea-Ea’若EaEa’,△rH0,吸热反应;若EaEa’,△rH0,放热反应。△rH是热力学数据,说明反应的可能性;但Ea是决定反应速率的活化能,是现实性问题。在过渡态理论中,Ea和温度的关系较为明显,T升高,反应物平均能量升高,差值Ea要变小些。(三)影响化学反应速率的因素影响化学反应速率的因素很多,除主要取决于反应物的性质外,外界因素也对反应速率有重要作用,如浓度、温度、压力及催化剂等。1、浓度对反应速率的影响(1)基元反应和非基元反应基元反应:能代表反应机理、由反应物微粒(可以是分子、原子、离子或自由基)一步直接实现的化学反应,称为基元步骤或基元反应。-5-非基元反应:由反应物微粒经过两步或两步以上才能完成的化学反应,称为非基元反应。在非基元反应中,由一个以上基元步骤构成的反应称为非基元反应或复杂反应。如复杂反应H2+Cl2=2HCl由几个基元步骤构成,它代表了该链反应的机理:Cl2+M→2Cl·+MCl·+H2→HCl+H·H·+Cl2→HCl+Cl·2Cl·+M→Cl2+M式中M表示只参加反应物微粒碰撞而不参加反应的其他分子,如器壁,它只起转移能量的作用。(2)反应分子数在基元步骤中,发生反应所需的最少分子数目称为反应分子数。根据反应分子数可将反应区分为单分子反应、双分子反应和三分子反应三种,如:单分子反应CH3COCH3→CH4+CO+H2双分子反应CH3COOH+C2H5OH→CH3COOC2H5+H2O三分子反应H2+2I·→2HI反应分子数不可能为零或负数、分数,只能为正整数,且只有上面三种数值,从理论上分析,四分子或四分子以上的反应几乎是不可能存在的。反应分子数是理论上认定的微观量。(3)速率方程和速率常数大量实验表明,在一定温度下,增大反应物的浓度能够增加反应速率。那么反应速率与反应物浓度之间存在着何种定量关系呢?人们在总结大量实验结果的基础上,提出了质量作用定律:在恒温下,基元反应的速率与各种反应物浓度以反应分子数为乘幂的乘积成正比。对于一般反应(这里指基元反应)aA+bB→gG+hH质量作用定律的数学表达式:=k·caA)(·cbB)((7-7)称为该反应的速率方程。式中k为速率常数,其意义是当各反应物浓度为1mol·dm-3时的反应速率。对于速率常数k,应注意以下几点:①速率常数k取决反应的本性。当其他条件相同时快反应通常有较大的速率常数,k小的反应在相同的条件下反应速率较慢。②速率常数k与浓度无关。③k随温度而变化,温度升高,k值通常增大。④k是有单位的量,k的单位随反应级数的不同而异。-6-前面提到,可以用任一反应物或产物浓度的变化来表示同一反应的速率。此时速率常数k的值不一定相同。例如:2NO+O2=2NO2其速率方程可写成:)(NO=–dtdcNO)(=k1·c2)(NO·c)(2O)(2O=–dtdcO)(2=k2·c2)(NO·c)(2O)(2NO=dtdcNO)(2=k3·c2)(NO·c)(2O由于–21dtdcNO)(=dtdcO)(2=21dtdcNO)(2则21k1=k2=21k3对于一般的化学反应akA)(=bkB)(=gkG)(=hkH)((7-8)确定速率方程时必须特别注意,质量作用定律仅适用于一步完成的反应——基元反应,而不适用于几个基元反应组成的总反应——非基元反应。如N2O5的分解反应:2N2O5=4NO2+O2实际上分三步进行:N2O5→NO2+NO3慢(定速步骤)NO2+NO3→NO2+O2+NO快NO+NO3→2NO2快实验测定起速率方程为:=kc)(52ON它是一级反应,不是二级反应。(4)反应级数通过实验可以得到许多化学反应的速率方程,如表-1表-1某些化学反应的速率方程化学反应速率方程反应级数1、2H2O2=2H2O+O2=k·c)(22OH12、S2O28+2I-=2SO24+I2=k·c)(282OS·c)(I1+1=2-7-3、4HBr+O2=2H2O+2Br2=k·c)(HBr·c)(2O1+1=24、2NO+2H2=N2+2H2O=k·c2)(NO·c)(2H2+1=25、CH3CHO=CH4+CO=k·c3)(3CHOCH3/26、2NO2=2NO+O2=k·c2)(2NO2由速率方程可以看出化学反应的速率与其反应物浓度的定量关系,对于一般的化学反应:aA+bB→gG+hH其速率方程一般可表示为:=k·cmA)(·cnB)(式中的c)(A、c)(B表示反应物A、B的浓度,a、b表示A、B在反应方程式中的计量数。m、n分别表示速率方程中c)(A和c)(B的指数。速率方程中,反应物浓度的指数m、n分别称为反应物A和B的反应级数,各组分反应级数的代数和称为该反应的总反应级数。反应级数=m+n可见,反应级数的大小,表示浓度对反应速率的影响程度,级数越大,速率受浓度的影响越大。若为零级反应,则表示反应速率与反应物浓度无关。某些表面催化反应,例如氨在金属钨表面上的分解反应,其分解速率在一定条件下与氨的浓度无关就属于零级反应。观察表中六个反应的反应级数,并与化学方程式中反应物的计量数比较可以明显地看出:反应级数不一定与计量数相符合,因而对于非基元反应,不能直接由反应方程式导出反应级数。另外,还应明确反应级数和反应分子数在概念上的区别:①反应级数是根据反应速率与各物质浓度的关系来确定的;反应分子数是根据基元反应中发生碰撞而引起反应所需的分子数来确定的。②反应级数可以是零、正、负整数和分数;反应分子数只可能是一、二、三。③反应级数是对宏观化学反应而言的;反应分子数是对微观上基元步骤而言的。(5)一级反应及其特点凡反应速率与反应物浓度一次方成正比的反应,称为一级反应,其速率方程可表示为:–dtdc=k1c(7-9)积分上式可得:lnc=–k1t+B(7-10)-8-当t=0时,c=0c(起始浓度),则B=lnc。故上式可表示为:lncc0=k1t或k1=t1lncc0(7-11)亦可表示为:c=
本文标题:高中化学奥林匹克竞赛辅导讲座:第7讲《化学反应速率与化学平衡》
链接地址:https://www.777doc.com/doc-3942139 .html