您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 综合/其它 > 近年考研数学三微积分题目整合及其详细解答
1微积分-考研题参考答案第二章极限与连续一.选择题:1.(98)设函数nnxxxf211lim)(++=∞→,讨论函数)(xf的间断点,其结论为()(A)不存在间断点.(B)存在间断点1=x.(C)存在间断点0=x.(D)存在间断点1−=x.解:当1||x时,0lim2=∞→nnx,有xxf+=1)(;当1||x时,∞=∞→nnx2lim,有0)(=xf;当1=x时,有11111)(=++=xf;当1−=x时,有01111)(=+−=xf.⎪⎪⎩⎪⎪⎨⎧=−+−≤=.1,0;1,1;11,1;1,0)(xxxxxxf显然1−=x处连续,1=x处间断,选择:(B).2.(00)设对任意的x,总有)()()(xgxfx≤≤ϕ,且0)]()([lim=−∞→xxgxϕ,则)(limxfx∞→()(A)存在且等于零.(B)存在但不一定等于零.(C)一定不存在.(D)不一定存在.解:有可能)(limxgx∞→与)(limxxϕ∞→都不存在,如222)(,1)(,)(xxxgxxxfxx+=+==ϕ,则有)()()(xgxfx≤≤ϕ,且0)]()([lim=−∞→xxgxϕ,但∞=∞→)(limxfx,选择:(D).3.(04)函数2)2)(1()2sin(||)(−−−=xxxxxxf在下列哪个区间内有界,()(A))0,1(−.(B))1,0(.(C))2,1(.(D))3,2(.解:间断点有2,1,0=x,其中0=x是可去间断点,2,1=x是无穷间断点,故有界区间不能包含2,1=x,选择:(A).4.(04)设)(xf在),(∞+−∞内有定义,且axfx=∞→)(lim,⎪⎩⎪⎨⎧=≠⎟⎠⎞⎜⎝⎛=.0,0;0,1)(xxxfxg则()(A)0=x必是)(xg的第一类间断点.(B)0=x必是)(xg的第二类间断点.(C)0=x必是)(xg的连续点.(D))(xg在点0=x的连续性与a的取值有关.解:aufxfxguxx==⎟⎠⎞⎜⎝⎛=∞→→→)(lim1lim)(lim00.当0=a时,)(xg在0=x处连续,当0≠a时,间断,选择:(D).25.(07)当+→0x时,与x等价的无穷小量是()(A)xe1−.(B))1ln(x+.(C)11−+x.(D)xcos1−.解:当+→0x时,xx−−~e1,xx~)1ln(+,xx21~11−+,xxx21)(21~cos12=−,选择:(B).6.(08)设ba0,则=+−−∞→nnnnba1)(lim()(A)a.(B)1−a.(C)b.(D)1−b.解:因ba0,有1ab,0lim=⎟⎠⎞⎜⎝⎛−∞→nnab,10111111lim)(lim−−−−∞→−−∞→=⋅=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛+=+aaababannnnnnn,选择:(B).7.(09)函数xxxxfπsin)(3−=的可去间断点的个数为()(A)1.(B)2.(C)3.(D)无穷多个.解:因xxxxfsinπ)(3−=的间断点处有0sinπ=x,即x取任何整数n,当整数1,0±≠n时,03≠−nn,∞=−→xxxnxπsinlim3,即nx=为xxxxfπsin)(3−=的无穷间断点,且π1πcosπ31limπsinlim200030=−=−→→xxxxxxx,π2πcosπ31limπsinlim210031=−=−→→xxxxxxx,π2πcosπ31limπsinlim210031=−=−−→−→xxxxxxx,故1,0±=x都是xxxxfπsin)(3−=的可去间断点,选择:(C).二.填空题:1.(95)=++∞→xxxx2sin3553lim2.解:当∞→x时,xx2~2sin,有5623553lim2sin3553lim22=⋅++=++∞→∞→xxxxxxxx,填空:56.2.(95)=−+++−+++∞→])1(2121[limnnnLL.解:原式2221)1(21)1(21lim)1(2121)]1(21[)21(lim==−++=−+++++++−+++−+++=∞→∞→nnnnnnnnnnnLLLL,填空:22.3.(99)设函数)1,0()(≠=aaaxfx,则=∞→)]()2()1(ln[1lim2nfffnnL.3解:原式anannnannaaannnnln21ln)1(21limln)21(lim)ln(lim22221=+=+++=⋅=∞→∞→∞→LL,填空:aln21.4.(02)设常数21≠a,则=⎥⎦⎤⎢⎣⎡−+−∞→nnannan)21(12lnlim.解:aananannanaaannnnnn211eln)21(11lnlim)21(11lnlim)21(12lnlim211211)21(−==⎥⎦⎤⎢⎣⎡−+=⎥⎦⎤⎢⎣⎡−+=⎥⎦⎤⎢⎣⎡−+−−−⋅−∞→∞→∞→,填空:a211−.5.(05)极限=+∞→12sinlim2xxxx.解:当∞→x时,12~12sin22++xxxx,有212lim12sinlim222=+=+∞→∞→xxxxxxx,填空:2.6.(06)=⎟⎠⎞⎜⎝⎛+−∞→nnnn)1(1lim.解:当n为偶数时,)(111)1(∞→→+=⎟⎠⎞⎜⎝⎛+−nnnnnn;当n为奇数时,)(111)1(∞→→+=⎟⎠⎞⎜⎝⎛+−nnnnnn;则11lim)1(=⎟⎠⎞⎜⎝⎛+−∞→nnnn,填空:1.7.(08)设函数⎪⎩⎪⎨⎧≤+=.||,||2;||,1)(2cxxcxxxf在),(∞+−∞内连续,则=c.解:因1)1(lim)(lim22+=+=−−→→cxxfcxcx,cxxfcxcx2||2lim)(lim==++→→,且)(lim)(limxfxfcxcx+−→→=时)(xf连续,则cc212=+,得1=c或2−=c,但显然有0≥c,即1=c,填空:1.4第三章导数与微分一.选择题:1.(95)设函数⎪⎩⎪⎨⎧=≠=.0,0;0,1sin||)(2xxxxxf则)(xf在点0=x处()(A)极限不存在.(B)极限存在但不连续.(C)连续但不可导.(D)可导.解:因)0(01sin||lim)(lim00fxxxfxx===→→,即)(xf在点0=x连续,又xxxxfxffxx1sin||lim0)0()(lim)0(00→→=−−=′不存在,即)(xf在点0=x不可导,选择:(C).2.(96)设)(xf处处可导,则()(A)当+∞=′+∞→)(limxfx时,必有+∞=+∞→)(limxfx.(B)当+∞=+∞→)(limxfx时,必有+∞=′+∞→)(limxfx.(C)当−∞=′−∞→)(limxfx时,必有−∞=−∞→)(limxfx.(D)当−∞=−∞→)(limxfx时,必有−∞=′−∞→)(limxfx.解:如取xxf=)(,有+∞=+∞→)(limxfx且−∞=−∞→)(limxfx,但1)(=′xf,排除(B)、(D),又取2)(xxf=,有xxf2)(=′,−∞=′−∞→)(limxfx,但+∞=−∞→)(limxfx,排除(C),选择:(A).3.(97)若)()()(+∞−∞=−xxfxf,在)0,(−∞内0)(′xf且0)(′′xf,则在),0(∞+内有()(A)0)(,0)(′′′xfxf.(B)0)(,0)(′′′xfxf.(C)0)(,0)(′′′xfxf.(D)0)(,0)(′′′xfxf.解:因)(xf是偶函数,则)(xf′是奇函数,)(xf′′是偶函数,选择:(C).4.(98)设周期函数)(xf在),(∞+−∞内可导,周期为4,又12)1()1(lim0−=−−→xxffx,则曲线)(xfy=在点))5(,5(f处的切线的斜率为()(A)21.(B)0.(C)1−.(D)2−.解:因1)1(21)(2)1()](1[lim2)1()1(lim00−=′=−⋅−−+=−−→→fxfxfxxffxx,得2)1(−=′f,又由于)(xf是周期为4的周期函数,2)1()5(−=′=′ff,即5=x时的切线斜率为2−,5选择:(D).5.(00)设函数)(xf在点ax=处可导,则函数|)(|xf在点ax=处不可导的充分条件是()(A)0)(=af且0)(=′af.(B)0)(=af且0)(≠′af.(C)0)(af且0)(′af.(D)0)(af且0)(′af.解:假设0)(af,则在a的某邻域内0)(xf,)(|)(|xfxf=,|)(|xf在点ax=处可导,矛盾;假设0)(af,则在a的某邻域内0)(xf,)(|)(|xfxf−=,|)(|xf在点ax=处可导,矛盾;故0)(=af.因)(xf在点ax=处可导,有)()(afaf−+′=′;|)(|xf在点ax=处不可导,有)()(afaf−+′−≠′;故0)(≠′af.选择:(B).6.(03)设函数)(|1|)(3xxxfϕ−=,其中)(xϕ在1=x处连续,则0)1(=ϕ是)(xf在1=x处可导的()(A)充分必要条件.(B)必要但非充分条件.(C)充分但非必要条件.(D)既非充分也非必要条件.解:)1(3)(1|1|lim1)1()(lim)1(311ϕϕ=−−=−−=′++→→+xxxxfxffxx,)1(31)1()(lim)1(1ϕ−=−−=′−→−xfxffx,选择:(A).7.(03)设)(xf为不恒等于零的奇函数,且)0(f′存在,则函数xxfxg)()(=()(A)在0=x处左极限不存在.(B)有跳跃间断点0=x.(C)在0=x处右极限不存在.(D)有可去间断点0=x.解:首先0=x处)(xg无定义,是)(xg的间断点.因)0(f′存在,即)0(f有定义,而)(xf为奇函数,有)()(xfxf−=−,则取0=x,得)0()0(ff−=,即0)0(=f,故)0(1)(lim)(lim)(lim00000fxfxxfxgxxx′=′==→→→,在0=x处)(xg极限存在,选择:(D).8.(05)以下四个命题中,正确的是()(A)若)(xf′在)1,0(内连续,则)(xf在)1,0(内有界.(B)若)(xf在)1,0(内连续,则)(xf在)1,0(内有界.(C)若)(xf′在)1,0(内有界,则)(xf在)1,0(内有界.(D)若)(xf在)1,0(内有界,则)(xf′在)1,0(内有界.解:在开区间内连续,不能说明有界,排除(A)、(B),如xxf1)(=,有)(xf与)(xf′都在)1,0(内连续,但)(xf在)1,0(内无界.6又如xxf=)(,有)(xf在)1,0(内有界,但xxf21)(=′在)1,0(内无界,排除(D),选择:(C).9.(06)设函数)(xfy=具有二阶导数,且0)(,0)(′′′xfxf,x∆为自变量x在点0x处的增量,y∆与dy分别为)(xf在点0x处的增量与微分,若0∆x,则()(A)ydy∆0.(B)dyy∆0.(C)0∆dyy.(D)0∆ydy.解:因0)(,0)(′′′xfxf,由导数几何意义知函数)(xfy=单调增加且上凹,图形上y∆是函数曲线上的增量,dy是切线上的增量,可知ydy∆0,也可根据0)(∆′=yxfdy,且dyxxfxoxxfxxfxfxxfy=∆′∆+∆′′+∆′=−∆+=∆)()(2)()()()(22,可知ydy∆0,选择:(A).10.(06)设函数)(xf在0=x处连续,且1)(lim220=→xxfx,则()(A)0)0(=f且)0(f′存在.(B)1)0(=f且)0(f′存在.(C)0)0(=f且)0(+′f存在.(D)1)0(=f且)0(+′f存在.解:因)(xf在0=x处连续,有001)(lim)(lim)0(222020=×=⋅==→→xxxfxffxx,且0→x时,+→02x,有1)0()0()(lim)(lim2202202=′=−=+→→+fxfxfxxfxx,选择:(C).11.(07)设函数)(xf在0=x处连续,下列命题错误的是
本文标题:近年考研数学三微积分题目整合及其详细解答
链接地址:https://www.777doc.com/doc-3944254 .html