您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 初中数学证明题辅助线典型做法训练一
第1页共4页八年级数学培优训练题补形法的应用班级________姓名__________分数_______一些几何题的证明或求解,由原图形分析探究,有时显得十分繁难,若通过适当的“补形”来进行,即添置适当的辅助线,将原图形填补成一个完整的、特殊的、简单的新图形,则能使原问题的本质得到充分的显示,通过对新图形的分析,使原问题顺利获解。这种方法,我们称之为补形法,它能培养思维能力和解题技巧。我们学过的三角形、特殊四边形、圆等都可以作为“补形”的对象。现就常见的添补的图形举例如下,以供参考。一、补成三角形1.补成三角形例1.如图1,已知E为梯形ABCD的腰CD的中点;证明:△ABE的面积等于梯形ABCD面积的一半。分析:过一顶点和一腰中点作直线,交底的延长线于一点,构造等面积的三角形。这也是梯形中常用的辅助线添法之一。略证:2.补成等腰三角形例2如图2.已知∠A=90°,AB=AC,∠1=∠2,CE⊥BD,求证:BD=2CE分析:因为角是轴对称图形,角平分线是对称轴,故根据对称性作出辅助线,不难发现CF=2CE,再证BD=CF即可。略证:3.补成直角三角形例3.如图3,在梯形ABCD中,AD∥BC,∠B+∠C=90°,F、G分别是AD、BC的中点,若BC=18,AD=8,求FG的长。分析:从∠B、∠C互余,考虑将它们变为直角三角形的角,故延长BA、CD,要求FG,需求PF、PG。略解:图3第2页共4页4.补成等边三角形例4.图4,△ABC是等边三角形,延长BC至D,延长BA至E,使AE=BD,连结CE、ED。证明:EC=ED分析:要证明EC=ED,通常要证∠ECD=∠EDC,但难以实现。这样可采用补形法即延长BD到F,使BF=BE,连结EF。略证:二、补成特殊的四边形1.补成平行四边形例5.如图5,四边形ABCD中,E、F、G、H分别是AB、CD、AC、BD的中点,并且E、F、G、H不在同一条直线上,求证:EF和GH互相平分。分析:因为平行四边形的对角线互相平分,故要证结论,需考虑四边形GEHF是平行四边形。略证:2.补成矩形例6.如图6,四边形ABCD中,∠A=60°,∠B=∠D=90°,AB=200m,CD=100m,求AD、BC的长。分析:矩形具有许多特殊的性质,巧妙地构造矩形,可使问题转化为解直角三角形,于是一些四边形中较难的计算题不难获解。略解:图6第3页共4页3.补成菱形例7.如图7,凸五边形ABCDE中,∠A=∠B=120°,EA=AB=BC=2,CD=DE=4,求其面积分析:延长EA、CB交于P,根据题意易证四边形PCDE为菱形。略解:4.补成正方形例8.如图8,在△ABC中,AD⊥BC于D,∠BAC=45°,BD=3,DC=2。求△ABC的面积。分析:本题要想从已知条件直接求出此三角形的面积确实有些困难,如果从题设∠BAC=45°,AD⊥BC出发,可以捕捉到利用轴对称性质构造一个正方形的信息,那么问题立即可以获解。略解:5.补成梯形例9.如图9,已知:G是△ABC中BC边上的中线的中点,L是△ABC外的一条直线,自A、B、C、G向L作垂线,垂足分别为A1、B1、C1、G1。求证:GG1=41(2AA1+BB1+CC1)。分析:本题从已知条件可知,中点多、垂线多特点,联想到构造直角梯形来加以解决比较恰当,故过D作DD1⊥L于D1,则DD1既是梯形BB1C1C的中位线,又是梯形DD1A1A的一条底边,因而,可想到运用梯形中位线定理突破,使要证的结论明显地显示出来,从而使问题快速获证。略证:图7图8图9第4页共4页三、练习1、在△ABC中,AC=BC,D是AC上一点,且AE垂直BD的延长线于E,又AE=12BD,求证:BE平分∠ABC。2、如图,已知:在△ABC内,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP3、已知:∠BAC=90°,AB=AC,AD=DC,AE⊥BD,求证:∠ADB=∠CDE4、设正三角形ABC的边长为2,M是AB边上的中点,P是BC边上的任意一点,PA+PM的最大值和最小值分别记为S和,求:S2-t2的值。ABQCPABCDEABCPM
本文标题:初中数学证明题辅助线典型做法训练一
链接地址:https://www.777doc.com/doc-3956791 .html