您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高考数学一轮复习 第十三章 第1讲 合情推理与演绎推理知识点 新人教A
1第1讲合情推理与演绎推理最新考纲1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.知识梳理1.合情推理类型定义特点归纳推理根据一类事物的部分对象具有某种性质,推出这类事物的全部对象都具有这种性质的推理由部分到整体、由个别到一般类比推理根据两类事物之间具有某些类似(一致)性,推测一类事物具有另一类事物类似(或相同)的性质的推理由特殊到特殊2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.诊断自测21.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×)(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(×)2.数列2,5,11,20,x,47,…中的x等于()A.28B.32C.33D.27解析5-2=3,11-5=6,20-11=9,推出x-20=12,所以x=32.答案B3.顾客请一位工艺师把A,B两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客.两件原料每道工序所需时间(单位:工作日)如下:工序时间原料粗加工精加工原料A915原料B621则最短交货期为________个工作日.解析先由徒弟粗加工原料B,6个工作日,再由师傅精加工21个工作日,在这期间徒弟再粗加工原料A,9工作日不计,再由师傅精加工15个工作日,共有6+21+15=42.答案4234.(2014·福建卷)已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b+c等于________.解析可分下列三种情形:(1)若只有①正确,则a≠2,b≠2,c=0,又a≠2且b≠2,∴c=2与c=0矛盾,此时不合题意;(2)若只有②正确,则a=2,b=2与集合中元素的互异性矛盾,此时不合题意;(3)若只有③正确,则a=2,b≠2,c≠0,即有a=2,b=0,c=1(符合题意).∴100a+10b+c=100×2+10×0+1=201.答案2015.(人教A选修2-2P93A5改编)在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立,类比上述性质,在等比数列{bn}中,若b9=1,则b1b2b3…bn=________.答案b1b2b3b4…b17-n(n<17,n∈N*)考点一归纳推理【例1】(2014·海口调研)如图是按一定规律排列的三角形等式表,现将等式从左至右,从上到下依次编上序号,即第一个等式为20+21=3,第二个等式为20+22=5,第三个等式为21+22=6,第四个等式为20+23=9,第五个等式为21+23=10,……,依此类推,则第99个等式为()20+21=320+22=521+22=620+23=921+23=1022+23=1220+24=1721+24=1822+24=2023+24=244……A.27+213=8320B.27+214=16512C.28+214=16640D.28+213=8448解析依题意,用(t,s)表示2t+2s,题中的等式的规律为:第一行为3(0,1);第二行为5(0,2),6(1,2);第三行为9(0,3),10(1,3),12(2,3);第四行为17(0,4),18(1,4),20(2,4),24(3,4);……,又因为99=(1+2+3+…+13)+8,因此第99个等式应位于第14行的从左到右的第8个位置,即是27+214=16512,故选B.答案B规律方法归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.【训练1】(·济南模拟)有一个奇数组成的数阵排列如下:1371321…591523……111725………1927…………29……………………………则第30行从左到右第3个数是________.解析先求第30行的第1个数,再求第30行的第3个数.观察每一行的第一个数,由归纳推理可得第30行的第1个数是1+4+6+8+10+…+60=30×(2+60)2-1=929.又第n行从左到右的第2个数比第1个数大2n,第3个数比第2个数大2n+2,所以第305行从左到右的第2个数比第1个数大60,第3个数比第2个数大62,故第30行从左到右第3个数是929+60+62=1051.答案1051考点二类比推理【例2】(1)若数列{an}是等差数列,则数列{bn}bn=a1+a2+…+ann也为等差数列.类比这一性质可知,若正项数列{cn}是等比数列,且{dn}也是等比数列,则dn的表达式应为()A.dn=c1+c2+…+cnnB.dn=c1·c2·…·cnnC.dn=ncn1+cn2+…+cnnnD.dn=nc1·c2·…·cn(2)在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析(1)法一从商类比开方,从和类比积,则算术平均数可以类比几何平均数,故dn的表达式为dn=nc1·c2·…·cn.法二若{an}是等差数列,则a1+a2+…+an=na1+n(n-1)2d,∴bn=a1+(n-1)2d=d2n+a1-d2,即{bn}为等差数列;若{cn}是等比数列,则c1·c2·…·cn=cn1·q1+2+…+(n-1)=cn1·qn(n-1)2,∴dn=nc1·c2·…·cn=c1·qn-12,即{dn}为等比数列,故选D.(2)由平面图形的面积类比立体图形的体积得出:在空间内,若两个正四面体的棱长的比为1∶2,则它们的底面积之比为1∶4,对应高之比为1∶2,所以体积比为1∶8.答案(1)D(2)1∶8规律方法在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:(1)找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积6等等;(2)找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.【训练2】把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r=a2+b22(其中a,b为直角三角形两直角边长).类比此方法可得三条侧棱长分别为a,b,c且两两垂直的三棱锥的外接球半径R=________.解析由平面类比到空间,把矩形类比为长方体,从而得出外接球半径.答案a2+b2+c22考点三演绎推理【例3】数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n∈N*).证明:(1)数列Snn是等比数列;(2)Sn+1=4an.证明(1)∵an+1=Sn+1-Sn,an+1=n+2nSn,∴(n+2)Sn=n(Sn+1-Sn),即nSn+1=2(n+1)Sn.∴Sn+1n+1=2·Snn,又S11=1≠0,(小前提)故Snn是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义,这里省略了)(2)由(1)可知Sn+1n+1=4·Sn-1n-1(n≥2),∴Sn+1=4(n+1)·Sn-1n-1=4·n-1+2n-1·Sn-1=4an(n≥2),(小前提)又a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)∴对于任意正整数n,都有Sn+1=4an.(结论)7(第(2)问的大前提是第(1)问的结论以及题中的已知条件)规律方法演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.【训练3】“因为对数函数y=logax是增函数(大前提),而y=log14x是对数函数(小前提),所以y=log14x是增函数(结论)”,以上推理的错误是()A.大前提错误导致结论错误B.小前提错误导致结论错误C.推理形式错误导致结论错误D.大前提和小前提错误导致结论错误解析当a>1时,函数y=logax是增函数;当0<a<1时,函数y=logax是减函数.故大前提错误导致结论错误.答案A[思想方法]1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.[易错防范]1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.82.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想不能凭空想象,要有猜想或拓展依据.基础巩固题组(建议用时:40分钟)一、选择题1.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C.g(x)D.-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案D2.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于()A.28B.76C.123D.199解析从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案C3.平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为()A.n+1B.2nC.n2+n+22D.n2+n+1解析1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区9域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n条直线最多可将平面分成1+(1+2+3+…+n)=1+n(n+1)2=n2+n+22个区域,选C.答案C4.(2014·北京卷)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人解析用A,B,C分别表示优秀、及格和不及格,而语文成绩得A的学生最多只有1个,语文成绩得B的也最多只有1个,语文成绩得C的也最多只有1个,因此学生最多只有3个,显然(A,C),(B,B),(C,A),满足条件.故学生最多3个.答案B5.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“acbc=ab”类比得到“a·cb·c
本文标题:高考数学一轮复习 第十三章 第1讲 合情推理与演绎推理知识点 新人教A
链接地址:https://www.777doc.com/doc-3980508 .html