您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高一数学--对数函数综合练习题1(答案)
习题精选精讲对数的运算性质2.例题分析:例1.用logax,logay,logaz表示下列各式:(1)logaxyz;(2)23logaxyz.解:(1)logaxyzlog()logaaxyzlogloglogaaaxyz;例2.求下列各式的值:(1)752log42;(2)5lg100.解:(1)原式=7522log4log2=227log45log2725119;(2)原式=2122lg10lg10555例3.计算:(1)lg1421g18lg7lg37;(2)9lg243lg;(3)2.1lg10lg38lg27lg.解:(1)解法一:18lg7lg37lg214lg2lg(27)2(lg7lg3)lg7lg(32)lg2lg72lg72lg3lg72lg3lg20;解法二:18lg7lg37lg214lg27lg14lg()lg7lg183=18)37(714lg2lg10;说明:本例体现了对数运算性质的灵活运用,运算性质常常逆用,应引起足够的重视。(2)253lg23lg53lg3lg9lg243lg25;(3)2.1lg10lg38lg27lg=11332223(lg32lg21)lg(3)lg23lg103232lg32lg212lg10.例4.已知lg20.3010,lg30.4771,求lg1.44的值。分析:此题应注意已知条件中的真数2,3,与所求中的真数有内在联系,故应将1.44进行恰当变形:22121.441.2(3210),然后应用对数的运算性质即可出现已知条件的形式。解:2212lg1.44lg1.2lg(3210)2(lg32lg21)2(0.477120.30101)0.1582.说明:此题应强调注意已知与所求的内在联系。(2)23logaxyz23log()logaaxyz23logloglogaaaxyz112logloglog23aaaxyz.习题精选精讲例5.已知loglogaaxcb,求x.分析:由于x是真数,故可直接利用对数定义求解;另外,由于等式右端为两实数和的形式,b的存在使变形产生困难,故可考虑将logac移到等式左端,或者将b变为对数形式。解:(法一)由对数定义可知:bcaaxloglogacbbaaca.(法二)由已知移项可得bcxaaloglog,即bcxalog,由对数定义知:bacx,∴bxca.(法三)logbaba,∴logloglogbaaaxcalogbaca,∴bxca.说明:此题有多种解法,体现了基本概念和运算性质的灵活运用,可以对于对数定义及运算性质的理解。1.对数的运算性质:如果a0,a1,M0,N0,那么(1)log()loglogaaaMNMN;(2)loglog-logaaaMMNN;(3)loglog()naaMnMnR.证明:(性质1)设logaMp,logaNq,由对数的定义可得pMa,qNa,∴pqpqMNaaa,∴log()aMNpq,即证得logloglogaaaMNMN.练习:证明性质2.说明:(1)语言表达:“积的对数=对数的和”……(简易表达以帮助记忆);(2)注意有时必须逆向运算:如11025101010logloglog;(3)注意定义域:)(log)(log))((log5353222是不成立的,)(log)(log1021010210是不成立的;(4)当心记忆错误:NlogMlog)MN(logaaa,试举反例,NlogMlog)NM(logaaa,试举反例。例6.(1)已知32a,用a表示33log4log6;(2)已知3log2a,35b,用a、b表示30log3.解:(1)∵32a,∴3log2a,∴log34log36=112log32log33a.(2)∵35b,∴3log5b,(性质3)设logaMp,由对数的定义可得pMa,∴nnpMa,∴lognaMnp,即证得loglognaaMnM.习题精选精讲又∵3log2a,∴30log3=31log235233311log2log3log5(1)22ab.换底公式1.换底公式:logloglogmamNNa(a0,a1;0,1mm)证明:设logaNx,则xaN,两边取以m为底的对数得:loglogxmmaN,∴loglogmmxaN,从而得:aNxmmloglog,∴aNNmmalogloglog.说明:两个较为常用的推论:(1)loglog1abba;(2)loglogmnaanbbm(a、0b且均不为1).证明:(1)1lglglglgloglogbaababba;(2)lglglogloglglgmnnamabnbnbbamam.2.例题分析:例1.计算:(1)0.21log35;(2)4492log3log2log32.解:(1)原式=0.251log3log3555151553;(2)原式=2345412log452log213log21232.例2.已知18log9a,185b,求36log45(用a,b表示).解:∵18log9a,∴a2log1218log1818,∴18log21a,又∵185b,∴18log5b,∴aba22log15log9log36log45log45log181818181836.例3.设1643tzyx,求证:yxz2111.证明:∵1643tzyx,∴6lglg4lglg3lglgtztytx,,,∴yttttxz21lg24lglg2lglg3lglg6lg11.例4.若8log3p,3log5q,求lg5.解:∵8log3p,∴)5lg1(32lg33lg33log2ppp,习题精选精讲又∵q3lg5lg5log3,∴)5lg1(33lg5lgpqq,∴pqpq35lg)31(∴pqpq3135lg.例5.计算:421938432log)2log2)(log3log3(log.解:原式23254312223(log3log3)(log2log2)log245)2log212)(log3log313log21(3322254545452log233log6532.例6.若2loglog8log4log4843m,求m.解:由题意可得:218lglg4lg8lg3lg4lgm,∴3lg21lgm,∴3m.对数函数例1.求下列函数的定义域:(1)2logxya;(2))4(logxya;(3))9(log2xya.分析:此题主要利用对数函数xyalog的定义域(0,)求解。解:(1)由2x0得0x,∴函数2logxya的定义域是0xx;(2)由04x得4x,∴函数)4(logxya的定义域是4xx;(3)由9-02x得-33x,∴函数)9(log2xya的定义域是33xx.说明:此题只是对数函数性质的简单应用,应强调学生注意书写格式。例2.求函数251xy和函数22112xy)0(x的反函数。解:(1)125xy∴115()log(2)fxx(-2)x;(2)211-22xy∴-112()log(-2)fxx5(2)2x.例4.比较下列各组数中两个值的大小:(1)2log3.4,2log8.5;(2)0.3log1.8,0.3log2.7;(3)log5.1a,log5.9a.解:(1)对数函数2logyx在(0,)上是增函数,于是2log3.42log8.5;(2)对数函数0.3logyx在(0,)上是减函数,习题精选精讲于是0.3log1.80.3log2.7;(3)当1a时,对数函数logayx在(0,)上是增函数,于是log5.1alog5.9a,当1oa时,对数函数logayx在(0,)上是减函数,于是log5.1alog5.9a.例5.比较下列比较下列各组数中两个值的大小:(1)6log7,7log6;(2)3log,2log0.8;(3)0.91.1,1.1log0.9,0.7log0.8;(4)5log3,6log3,7log3.解:(1)∵66log7log61,77log6log71,∴6log77log6;(2)∵33loglog10,22log0.8log10,∴3log2log0.8.(3)∵0.901.11.11,1.11.1log0.9log10,0.70.70.70log1log0.8log0.71,∴0.91.10.7log0.81.1log0.9.(4)∵3330log5log6log7,∴5log36log37log3.例6.已知log4log4mn,比较m,n的大小。解:∵log4log4mn,∴4411loglogmn,当1m,1n时,得44110loglogmn,∴44loglognm,∴1mn.当01m,01n时,得44110loglogmn,∴44loglognm,∴01nm.当01m,1n时,得4log0m,40logn,∴01m,1n,∴01mn.综上所述,m,n的大小关系为1mn或01nm或01mn.例7.求下列函数的值域:(1)2log(3)yx;(2)22log(3)yx;(3)2log(47)ayxx(0a且1a).解:(1)令3tx,则2logyt,∵0t,∴yR,即函数值域为R.(2)令23tx,则03t,∴2log3y,即函数值域为2(,log3].(3)令2247(2)33txxx,当1a时,log3ay,即值域为[log3,)a,习题精选精讲当01a时,log3ay,即值域为(,log3]a.例8.判断函数22()log(1)fxxx的奇偶性。解:∵21xx恒成立,故()fx的定义域为(,),22()log(1)fxxx221log1xx222221log(1)xxxx22log1()xxfx,所以,()fx为奇函数。例9.求函数2132log(32)yxx的单调区间。解:令223132()24uxxx在3[,)2上递增,在3(,]2上递减,又∵2320xx,∴2x或1x,故232uxx在(2,)上递增,在(,1)上递减,又∵132logyu为减函数,所以,函数2132log(32)yxx在(2,)上递增,在(,1)上递减。说明:利用对数函数性质判断函数单调性时,首先要考察函数的定义域,再利用复合函数单调性的判断方法来求单调区间。例10.若函数22log()yxaxa在区间(,13)上是增函数,a的取值范围。解:令2()ugxxaxa,∵函数2logyu为减函数,∴2()ugxxaxa在区间(,13)上递减,且满足0u,∴132(13)0ag,解得2232a,所以,a的取值范围为[223,2].对数函数1如图,曲线是对数函数的图象,已知的取值,则相应于曲线的值依次为().(A
本文标题:高一数学--对数函数综合练习题1(答案)
链接地址:https://www.777doc.com/doc-3988881 .html