您好,欢迎访问三七文档
3.2.1古典概型3.2.1(一)[问题情境]香港著名电影演员周润发在影片《赌神》中演技高超,他扮演的赌神在一次聚赌中,曾连续十次抛掷骰子都出现6点,那么如果是你随机地来抛掷骰子,连续3次、4次、…、10次都是6点的概率有多大?本节我们就来探究这个问题.探究点一基本事件问题1抛掷两枚质地均匀的硬币,有哪几种可能结果?连续抛掷三枚质地均匀的硬币,有哪几种可能结果?答(正,正),(正,反),(反,正),(反,反);(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).问题2上述试验中的每一个结果都是随机事件,我们把这类事件称为基本事件.在一次试验中,任何两个基本事件是什么关系?答由于任何两种结果都不可能同时发生,所以它们的关系是互斥关系.问题3在连续抛掷三枚质地均匀的硬币的试验中,随机事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?答(正,正,反),(正,反,正),(反,正,正);(正,正,正),(正,正,反),(正,反,正),(反,正,正).例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?事件“取到字母a”是哪些基本事件的和?解所求的基本事件有6个,A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};“取到字母a”是基本事件A、B、C的和,即A+B+C.小结基本事件有如下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.跟踪训练1把一枚骰子抛6次,设正面出现的点数为x.(1)求出x的可能取值情况;(2)下列事件由哪些基本事件组成.①x的取值为2的倍数(记为事件A);②x的取值大于3(记为事件B);③x的取值为不超过2(记为事件C).解(1)由于1到6个点都有可能出现,所以x的可能的取值为1,2,3,4,5,6.(2)①事件A包括x的取值为2,4,6.②事件B包括x的取值为4,5,6.③事件C包括x的取值为1,2.探究点二古典概型问题1抛掷一枚质地均匀的硬币,每个基本事件出现的可能性相等吗?答基本事件有两个,正面朝上和正面朝下,由于质地均匀,因此基本事件出现的可能性是相等的.问题2抛掷一枚质地均匀的骰子,有哪些基本事件?每个基本事件出现的可能性相等吗?答这个试验的基本事件有6个,正面出现的点数为1,2,3,4,5,6,由于质地均匀,因此基本事件出现的可能性是相等的.问题3上述试验的共同特点是什么?答(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.例2某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、……、命中5环和不中环.你认为这是古典概型吗?为什么?解不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环、……、命中5环和不中环的出现不是等可能的(为什么?),即不满足古典概型的第二个条件.小结判断一个试验是不是古典概型要抓住两点:一是有限性;二是等可能性.跟踪训练2从所有整数中任取一个数的试验中“抽取一个整数”是古典概型吗?解不是,因为有无数个基本事件.探究点三古典概型概率公式导引在古典概型下,每一基本事件的概率是多少?随机事件出现的概率如何计算?问题1在抛掷硬币试验中,如何求正面朝上及反面朝上的概率?解出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”).由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1,因此P(“正面朝上”)=P(“反面朝上”)=12,即P(出现正面朝上)=12=“出现正面朝上”所包含的基本事件的个数基本事件的总数.问题2在抛掷骰子的试验中,如何求出现各个点的概率?解出现各个点的概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”),反复利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1.所以P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=16.进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=16+16+16=12.即P(“出现偶数点”)=“出现偶数点”所包含基本事件的个数”/基本事件的总数;P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数”/基本事件的总数.P(A)=事件A所包含的基本事件的个数/基本事件的总数.问题3从集合的观点分析,如果在一次试验中,等可能出现的所有n个基本事件组成全集U,事件A包含的m个基本事件组成子集A,那么事件A发生的概率P(A)等于什么?特别地,当A=U,A=∅时,P(A)等于什么?答P(A)=mn;当A=U时,P(A)=1;当A=∅时,P(A)=0.例3单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,则他答对的概率是多少?解由于考生随机地选择一个答案,所以他选择A,B,C,D哪一个选项都有可能,因此基本事件总数为4,设答对为随机事件A,由于正确答案是唯一的,所以事件A只包含一个基本事件,所以P(A)=14.小结解答概率题要有必要的文字叙述,一般要用字母设出所求的随机事件,要写出所有的基本事件及个数,写出随机事件所包含的基本事件及个数,然后应用公式求出.跟踪训练3某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.解只要检测的2听中有1听不合格,就表示查出了不合格产品.分为两种情况,1听不合格和2听都不合格.1听不合格:A1={第一次抽出不合格产品},A2={第二次抽出不合格产品}2听都不合格:A12={两次抽出不合格产品}.而A1、A2、A12是互斥事件,用A表示“抽出的2听饮料中有不合格产品”,则A=A1∪A2∪A12,从而P(A)=P(A1)+P(A2)+P(A12),因为A1中的基本事件的个数为8,A2中的基本事件的个数为8,A12中的基本事件的个数为2,全部基本事件的总数为30,所以P(A)=830+830+230=0.6.1.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有()A.1个B.2个C.3个D.4个解析该生选报的所有可能情况:{数学和计算机},{数学和航空模型}、{计算机和航空模型},所以基本事件有3个.C2.下列不是古典概型的是()A.从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小B.同时掷两颗骰子,点数和为7的概率C.近三天中有一天降雨的概率D.10个人站成一排,其中甲、乙相邻的概率解析A、B、D为古典概型,因为都适合古典概型的两个特征:有限性和等可能性,而C不适合等可能性,故不为古典概型.C3.甲、乙、丙三名同学站成一排,甲站在中间的概率是()A.16B.12C.13D.23解析基本事件有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲共六个,甲站在中间的事件包括乙甲丙、丙甲乙共2个,所以甲站在中间的概率:P=26=13.C4.用1,2,3组成无重复数字的三位数,这些数能被2整除的概率是________.解析用1,2,3组成的无重复数字的三位数共6个,分别为123,132,213,231,312,321,其中能被2整除的有132,312这2个数,故能被2整除的概率为13.13复习总结1.古典概型的适用条件:(1)试验中所有可能出现的基本事件;(2)每个基本事件出现的可能性.2.古典概型的解题步骤:(1)求出总的数;(2)求出事件A所包含的数,然后利用公式P(A)=.A包含的基本事件的个数基本事件的总数只有有限个相等基本事件基本事件探究点与顺序有关的古典概型问题1在标准化的考试中既有单选题又有多选题,多选题是从A、B、C、D四个选项中选出所有正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?答这是因为猜对的概率更小,由概率公式可知,分子上的数还是1,因正确答案是唯一的,而分母上的数即基本事件的总数增多了,有(A),(B),(C),(D),(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),(A,B,C),(A,B,D),(A,C,D),(B,C,D),(A,B,C,D)共15个,所以所求概率为11514.例1同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?解(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(可由列表法得到)由表中可知同时掷两个骰子的结果共有36种.(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为(1,4),(2,3),(3,2),(4,1).2号骰子1号骰子1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得P(A)=A所包含的基本事件的个数基本事件的总数=436=19.问题2为什么要把两个骰子标上记号?如果不标记号会出现什么情况?若用古典概型公式,所求的概率是多少?答如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别,这时,所有可能的结果将是(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),所求的概率为P(A)=A所包含的基本事件的个数基本事件的总数=221.问题3在例1中所求的概率和问题2中所求的概率相同吗?哪种求法不符合古典概型?为什么?答求出的概率不相同;问题2中的求法不符合古典概型;因为两个不同的骰子所抛掷出来的点构造的基本事件不是等可能事件.小结古典概型问题包含的题型较多,但都必须紧扣古典概型的定义,进而用公式进行计算.列举法是求解古典概型问题的常用方法,借助于图表等有时更实用有效.跟踪训练1假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,……,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他在自动取款机上随机试一次密码就能取到钱的概率是多少?解这个人随机试一个密码,相当做1次随机试验,试验的基本事件(所有可能的结果)共有10000种.由于是假设的随机的试密码,相当于试验的每一个结果是等可能的.所以P(“能取到钱”)=“能取到钱”所包含的基本事件的个数10000=110000.探究点与顺序无关的古典概型例2现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.解(1)从8人中
本文标题:3.2.1古典概型
链接地址:https://www.777doc.com/doc-3993253 .html