您好,欢迎访问三七文档
概率的加法公式当事件A与B互斥时,A∪B发生的概率为特别地,若事件A与事件B互为对立事件,则A∪B为必然事件()()1PAPBP(A∪B)=P(A)+P(B)历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:nmnm抛掷次数()正面向上次数(频数)频率()204810610.5181404020480.50691200060190.501624000120120500530000149840.499672088361240.5011思考:对于随机事件,用模拟试验的方法来求某一随机事件的概率好不好?为什么?通过试验和观察的方法,虽然可以得到一些事件的概率估计,但是这种方法的工作量大、耗时多,且得到的仅是概率的近似值课堂训练课堂小结典型例题方法探究基本概念试验2:掷一颗均匀的骰子一次,观察出现的点数有哪几种结果?试验1:掷一枚质地均匀的硬币一次,观察出现哪几种结果?2种正面朝上反面朝上6种4点1点2点3点5点6点一次试验可能出现的每一个结果称为一个基本事件课堂训练课堂小结典型例题方法探究基本概念123456点点点点点点问题1:(1)(2)在一次试验中,会同时出现与这两个基本事件吗?“1点”“2点”事件“出现偶数点”包含哪几个基本事件?“2点”“4点”“6点”不会任何两个基本事件是互斥的任何事件(除不可能事件)都可以表示成基本事件的和事件“出现的点数不大于4”包含哪几个基本事件?“1点”“2点”“3点”“4点”一次试验可能出现的每一个结果称为一个基本事件课堂训练课堂小结典型例题方法探究基本概念例1从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?{,}Aab{,}Bac{,}Cad{,}Dbc{,}Ebd{,}Fcd解:所求的基本事件共有6个:abcdbcdcd树状图123456点点点点点点课堂训练课堂小结典型例题方法探究基本概念(“1点”)P(“2点”)P(“3点”)P(“4点”)P(“5点”)P(“6点”)P16反面向上正面向上(“正面向上”)P(“反面向上”)P12问题2:以下每个基本事件出现的概率是多少?试验1试验2课堂训练课堂小结典型例题方法探究基本概念六个基本事件的概率都是“1点”、“2点”“3点”、“4点”“5点”、“6点”“正面朝上”“反面朝上”基本事件试验2试验1基本事件出现的可能性两个基本事件的概率都是1216问题3:观察对比,找出试验1和试验2的共同特点:(1)试验中所有可能出现的基本事件的个数只有有限个相等(2)每个基本事件出现的可能性有限性等可能性(1)试验中所有可能出现的基本事件的个数(2)每个基本事件出现的可能性相等只有有限个我们将具有这两个特点的概率模型称为古典概率模型古典概型简称:课堂训练课堂小结典型例题方法探究基本概念有限性等可能性问题4:向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?有限性等可能性课堂训练课堂小结典型例题方法探究基本概念问题5:某同学随机地向一靶心进行射击,这一试验的结果有:“命中10环”、“命中9环”、“命中8环”、“命中7环”、“命中6环”、“命中5环”和“不中环”。你认为这是古典概型吗?为什么?有限性等可能性1099998888777766665555课堂训练课堂小结典型例题方法探究基本概念问题6:你能举出几个生活中的古典概型的例子吗?课堂训练课堂小结典型例题方法探究基本概念掷一颗均匀的骰子,试验2:问题7:在古典概率模型中,如何求随机事件出现的概率?为“出现偶数点”,事件A请问事件A的概率是多少?探讨:事件A包含个基本事件:246点点点3(A)P(“4点”)P(“2点”)P(“6点”)P(A)P63方法探究课堂训练课堂小结典型例题基本概念基本事件总数为:661616163211点,2点,3点,4点,5点,6点(A)PA包含的基本事件的个数基本事件的总数方法探究课堂训练课堂小结典型例题基本概念古典概型的概率计算公式:nm要判断所用概率模型是不是古典概型(前提)在使用古典概型的概率公式时,应该注意:例2、Throwtwocoinsofthesamequalitywithbothappearingfrontagetoface,theprobabilityis()(A)1/6(B)1/4(C)1/3(D)1/2上题若为单选题,某人因为不懂英语,随机选一个,则选对的概率为?若为”不定项选择”,则随机选对概率增大还是减少?为多少?D同时掷两枚质地均匀的硬币,“二次都正面朝上”的概率为()(A)1/6(B)1/4(C)1/3(D)1/2注用古典概型求概率时,一定要验证基本事件是否等可能性。实践探究:练:连续掷一枚质地均匀的硬币两次,“二次都正面朝上”的概率为.1/4例3同时掷两个均匀的骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是9的结果有多少种?(3)向上的点数之和是9的概率是多少?解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,它总共出现的情况如下表所示:(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)从表中可以看出同时掷两个骰子的结果共有36种。6543216543211号骰子2号骰子典型例题课堂训练课堂小结方法探究基本概念列表法一般适用于分两步完成的结果的列举。(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(6,3)(5,4)(4,5)(3,6)6543216543211号骰子2号骰子(2)在上面的结果中,向上的点数之和为9的结果有4种,分别为:A41A369P所包含的基本事件的个数()===基本事件的总数(3)由于所有36种结果是等可能的,其中向上点数之和为9的结果(记为事件A)有4种,因此,(3,6),(4,5),(5,4),(6,3)典型例题课堂训练课堂小结方法探究基本概念为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?A2A21P所包含的基本事件的个数()==基本事件的总数如果不标上记号,类似于(3,6)和(6,3)的结果将没有区别。这时,所有可能的结果将是:(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)6543216543211号骰子2号骰子(3,6)(4,5)因此,在投掷两个骰子的过程中,我们必须对两个骰子加以标号区分(3,6)(3,3)概率不相等概率相等吗?课堂小结典型例题课堂训练方法探究基本概念1.一副扑克牌,去掉大王和小王,在剩下的52张牌中随意抽出一张牌,试求以下各个事件的概率:A:抽到一张QB:抽到一张“梅花”C:抽到一张红桃K2.在大小相同的5个球中,2个红球,3个白球.若从中任取2个,则所取的2个球中至少有一个红球的概率.变式:在大小相同的5个球中,2个红球,3个白球。从中任取一个然后放回,再任取一个,求2次取到是一个红球和一个白球的概率.课堂小结典型例题课堂训练方法探究基本概念思考题同时抛掷三枚均匀的硬币,会出现几种结果?出现的概率是多少?“一枚正面向上,两枚反面向上”AAP所包含的基本事件的个数()=基本事件的总数1.古典概型:(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。(等可能性)2.古典概型计算任何事件的概率计算公式为:3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数常用的方法是列举法(分类列举,画树状图和列表),注意做到不重不漏。今天我们从“赌”中学习真知,明天我们用知识创造财富!
本文标题:古典概型古典概型
链接地址:https://www.777doc.com/doc-3993688 .html