您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 第12章整式的乘除知识点总结
第12章整式的乘除§12.1幂的运算一、同底数幂的乘法1、法则:am·an·ap·……=am+n+p+……(m、n、p……均为正整数)文字:同底数幂相乘,底数不变,指数相加。2、注意事项:(1)a可以是实数,也可以是代数式等。如:2·3·4=2+3+4=9;(-2)2·(-2)3=(-2)2+3=(-2)5=-25;(2)3·(2)4=(2)3+4=(2)7;(a+b)3·(a+b)4·(a+b)=(a+b)3+4+1=(a+b)8(2)一定要“同底数幂”“相乘”时,才能把指数相加。(3)如果是二次根式或者整式作为底数时,要添加括号。二、幂的乘方1、法则:(am)n=amn(m、n均为正整数)。推广:{[(am)n]p}s=amnps文字:幂的乘方,底数不变,指数相乘。2、注意事项:(1)a可以是实数,也可以是代数式等。如:(2)3=2×3=6;[(2)3]4=(2)3×4=(2)12;[(a-b)2]4=(a-b)2×4=(a-b)8(2)运用时注意符号的变化。(3)注意该法则的逆应用,即:amn=(am)n,如:a15=(a3)5=(a5)3三、积的乘方1、法则:(ab)n=anbn(n为正整数)。推广:(acde)n=ancndnen文字:积的乘方等于把积的每一个因式都分别乘方,再把所得的幂相乘。2、注意事项:(1)a、b可以是实数,也可以是代数式等。如:(2)3=222=42;(2×3)2=(2)2×(3)2=2×3=6;(-2abc)3=(-2)3a3b3c3=-8a3b3c3;[(a+b)(a-b)]2=(a+b)2(a-b)2(2)运用时注意符号的变化。(3)注意该法则的逆应用,即:anbn=(ab)n;如:23×33=(2×3)3=63,(x+y)2(x-y)2=[(x+y)(x-y)]2四、同底数幂的除法1、法则:am÷an=am-n(m、n均为正整数,m>n,a≠0)文字:同底数幂相除,底数不变,指数相减。2、注意事项:(1)a可以是实数,也可以是代数式等。如:4÷3=4-3=;(-2)5÷(-2)3=(-2)5-3=(-2)2=4;(2)6÷(2)4=(2)6-4=(2)2=2;(a+b)16÷(a+b)14=(a+b)16-14=(a+b)2=a2+2ab+b2(2)注意a≠0这个条件。(3)注意该法则的逆应用,即:am-n=am÷an;如:ax-y=ax÷ay,(x+y)2a-3=(x+y)2a÷(x+y)3§12.2整式的乘法一、单项式与单项式相乘法则:单项式与单项式相乘,只要将它们的系数与系数相乘,相同字母的幂相乘,多余的字母照搬到最后结果中。如:(-5a2b2)·(-4b2c)·(-23ab)=[(-5)×(-4)×(-23)]·(a2·a)·(b2·b2)·c=-30a3b4c二、单项式与多项式相乘法则:(乘法分配律)只要将单项式分别去乘以多项式的每一项,再将所得的积相加。如:22(3)(21)xxx=(-3x2)·(-x2)+(-3x2)·2x一(-3x2)·1=432363xxx三、多项式与多项式相乘法则:(1)将一个多项式中的每一项分别乘以另一个多项式的每一项,再将所得的积相加。如:(m+n)(a+b)=ma+mb+na+nb(2)把其中一个多项式看成一个整体(单项式),去乘以另一个多项式的每一项,再按照单项式与多项式相乘的法则继续相乘,最后将所得的积相加。如:(m+n)(a+b)=(m+n)a+(m+n)b=ma+na+mb+nb§12.3乘法公式一、两数和乘以这两数的差1、公式:(a+b)(a-b)=a2-b2;名称:平方差公式。2、注意事项:(1)a、b可以是实数,也可以是代数式等。如:(10+9)(10-9)=102-92=100-81=19;(2xy+a)(2xy-a)=(2xy)2-a2=4x2y2-a2;(a+b+)(a+b-)=(2xy)2-a2=4x2y2-a2;(2)注意公式中的第一项、第二项各自相同,中间是“异号”的情况,才能用平方差公式。(3)注意公式的来源还是“多项式×多项式”。二、完全平方公式1、公式:(a±b)2=a2±2ab+b2;名称:完全平方公式。2、注意事项:(1)a、b可以是实数,也可以是代数式等。如:(2+3)2=(2)2+2×2×3+32=2+62+9=11+62;(mn-a)2=(mn)2-2mn·a+a2=m2n2-2mna+a2;(a+b-)2=(a+b)2-2(a+b)+2=a2+2ab+b2-2a-b+2;(2)注意公式运用时的对位“套用”;(3)注意公式中“中间的乘积项的符号”。3、补充公式:(a+b+c)2=a2+c2+b2+2ab+2bc+2ca特别提醒:利用乘法公式进行整式的运算时注意“思维顺序”是:“一看二套三计算”。§12.4整式的除法一、单项式除以单项式法则:单项式相除,只要将它们的系数与系数相除,相同字母的幂相除,只在被除式中出现的字母,则连同它的指数一起作为商的一个因式。如:-21a2b3c÷3ab=(-21÷3)·a2-1·b3-1·c=-7ab2c(2x2y)3·(-7xy2)÷14x4y3=8x6y3·(-7xy2)÷14x4y3=[8×(-7)]·x6+1y3+2÷14x4y3=(-56÷14)·x7-4·y5-3=-4x3y25(2a+b)4÷(2a+b)2=(5÷1)(2a+b)4-2=5(2a+bz2=5(4a2+4ab+b2)=20a2+20ab+5b2二、多项式除以单项式法则:(乘法分配律)只要将多项式的每一项分别去除以单项式,再将所得的商相加。如:(21x4y3-35x3y2+7x2y2)÷(-7x2y)=21x4y3÷(-7x2y)-35x3y2÷(-7x2y)+7x2y2÷(-7x2y)=-3x2y2+5xy-y[4y(2x-y)-2x(2x-y)]÷(2x-y)=4y(2x-y)÷(2x-y)-2x(2x-y)]÷(2x-y)=4y-2x◇整式的运算顺序:先乘方(开方),再乘除,最后加减,括号优先。§12.5因式分解一、因式分解的定义:把一个多项式化为几个整式的积的形式,叫做因式分解。(分解因式)因式分解与整式乘法互为逆运算二、提取公因式法:把一个多项式的公因式提取出来,使多项式化为两个因式的积,这种分解因式的方法叫做提公因式法。△公因式定义:多项式中每一项都含有的相同的因式称为公因式。△具体步骤:(1)“看”。观察各项是否有公因式;(2)“隔”。把每项的公因式“隔离”出来;(3)“提”。按照乘法分配律的逆运用把公因式提出来,使多项式化为两个因式的积。△(a-b)2n=(b-a)2n(n为正整数);(a-b)2n+1=-(b-a)2n+1(n为正整数);如:8a2b-4ab+2a=2a·4ab-2a·2b+2a·1=2a(4ab-2b+1);-5a2+25a=-5a·a+5a·5=-5a(a+5)(注意:凡给出的多项式的“首项为负”时,要连同“-”号与公因式一并提出来。)三、公式法:利用乘法公式进行因式分解的方法,叫做公式法。1、平方差公式:a2-b2=(a+b)(a-b);名称:平方差公式。△注意事项:(1)a、b可以是实数,也可以是代数式等。如:102-92=(10+9)(10-9)=19×1=19;4x2y2-a2=(2xy)2-a2=(2xy+a)(2xy-a);nnnnnnn8)1212)(1212(121222(2)注意公式中的第一项、第二项各自相同,中间是“异号”的情况,才能用平方差公式。(3)注意公式的结构好形式,运用时一定要判断准确。2、完全平方公式:(a±b)2=a2±2ab+b2;名称:完全平方公式。△注意事项:(1)a、b可以是实数,也可以是代数式等。如:m2n2-2mna+a2=(mn)2-2mn·a+a2=(mn-a)2;x2+4xy+y2=x2+2·x·2y+(2y)2=(x+2y)2(2)注意公式运用时的对位“套用”;(3)注意公式中“中间的乘积项的符号”。四、补充分解法:1、公式:x2+(a+b)x+ab=(x+a)(x+b)。如:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3);x2+5x-6=x2+[6+(-1))]x+6×(-1)=(x+6)(x-1)2、“十字相乘法”如:2914xx=(x+2)(x+7)228xx=(x+2)(x-4)1212171-42+7=92+(-4)=-2五、综合1、注意利用乘法公式进行因式分解时注意“思维顺序”是:“一看二套三分解”。2、遇到因式分解的题目时,其整体的思维顺序是:(1)看首项是否为“一”,若为“一”,就要注意提负号;(2)看各项是否有公因式,若有公因式,应该首先把公因式提取出来再说;(3)没有公因式时,就要考虑用乘法公式进行因式分解或者“十字相乘法”。3、注意事项:(1)注意(a-b)与(b-a)的关系是互为相反数;(2)因式分解要彻底,不要只提出公因式就完,还要看剩下的因式是否可以继续分解;(3)现阶段的因式分解的题目,一般都要求在有理数范围内分解,所以不能出现带根号的数;(4)注意“十字相乘法”只适用于“二次三项式型”因式分解,不要乱用此法。
本文标题:第12章整式的乘除知识点总结
链接地址:https://www.777doc.com/doc-4002979 .html