您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高一三角函数知识点梳理总结
期末复习知识点梳理第一章三角函数整理人:李路红高一三角函数知识§1.1任意角和弧度制零角负角:顺时针防线旋转正角:逆时针方向旋转任意角..12.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。3..①与(0°≤<360°)终边相同的角的集合:Zkk,360|②终边在x轴上的角的集合:Zkk,180|③终边在y轴上的角的集合:Zkk,90180|④终边在坐标轴上的角的集合:Zkk,90|⑤终边在y=x轴上的角的集合:Zkk,45180|⑥终边在xy轴上的角的集合:Zkk,45180|⑦若角与角的终边关于x轴对称,则角与角的关系:Zkk,360⑧若角与角的终边关于y轴对称,则与角的关系:Zkk,180360⑨若角与角的终边在一条直线上,则与角的关系:Zkk,180⑩角与角的终边互相垂直,则与角的关系:Zkk,901804.弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角所对的弧长为l,则其弧度数的绝对值|rl,其中r是圆的半径。5.弧度与角度互换公式:1rad=(180)°≈57.30°1°=180注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.6..第一象限的角:Zkkk,222|锐角:20|;小于o90的角:2|(包括负角和零角)7.弧长公式:||lR扇形面积公式:211||22SlRR期末复习知识点梳理第一章三角函数整理人:李路红§1.2任意角的三角函数1.任意角的三角函数的定义:设是任意一个角,P(,)xy是的终边上的任意一点(异于原点),它与原点的距离是220rxy,那么sin,cosyxrr,tan,0yxx三角函数值只与角的大小有关,而与终边上点P的位置无关。2..三角函数线正弦线:MP;余弦线:OM;正切线:AT.3.三角函数在各象限的符号:(一全二正弦,三切四余弦)++-+-+---++-sincostan4.同角三角函数的基本关系式:(1)平方关系:22221sincos1,1tancos(2)商数关系:sintancos(用于切化弦)※平方关系一般为隐含条件,直接运用。注意“1”的代换§1.3三角函数的诱导公式1.诱导公式(把角写成2k形式,利用口诀:奇变偶不变,符号看象限)Ⅰ)xxkxxkxxktan)2tan(cos)2cos(sin)2sin(Ⅱ)xxxxxxtan)tan(cos)cos(sin)sin(Ⅲ)xxxxxxtan)tan(cos)cos(sin)sin(Ⅳ)xxxxxxtan)tan(cos)cos(sin)sin(Ⅴ)sin)2cos(cos)2sin(Ⅵ)sin)2cos(cos)2sin(§1.4三角函数的图像与性质1.周期函数定义:对于函数()fx,如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,()()fxTfx都成立,那么就把函数()fx叫做周期函数,不为零的常数T叫做这个函数的周期。(并非所有函数都有最小正周期)①xysin与xycos的周期是.roxya的终边P(x,y)TMAOPxy期末复习知识点梳理第一章三角函数整理人:李路红②)sin(xy或)cos(xy(0)的周期2T.③TxAy的周期为)tan(2tanxy的周期为2(2TT,如图)2.三种常用三角函数的主要性质3、形如sin()yAx的函数:(1)几个物理量:A―振幅;1fT―频率(周期的倒数);x—相位;―初相;(2)函数sin()yAx表达式的确定:A由最值确定;由周期确定;由图象上的特殊点确定,如()sin()(0,0fxAxA,||)2的图象如图所示,则()fx=_____(答:15()2sin()23fxx);(3)函数sin()yAx图象的画法:①“五点法”――设Xx,令X=0,3,,,222求出相应的x值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。函数y=sinxy=cosxy=tanx定义域(-∞,+∞)(-∞,+∞),2xxkxR值域[-1,1][-1,1](-∞,+∞)奇偶性奇函数偶函数奇函数最小正周期2π2ππ单调性2k-,2k+22增32k+,2k+22减2k,2k增2k,2k减k-,k+22递增对称性))(0,(Zkk)(,2Zkkx)(0,2ZkkZkkx,))(0,2(Zkk无对称轴23题图29YX-223▲Oyx期末复习知识点梳理第一章三角函数整理人:李路红(4)函数sin()yAxk的图象与sinyx图象间的关系:①函数sinyx的图象纵坐标不变,横坐标向左(0)或向右(0)平移||个单位得sinyx的图象;②函数sinyx图象的纵坐标不变,横坐标变为原来的1,得到函数sinyx的图象;③函数sinyx图象的横坐标不变,纵坐标变为原来的A倍,得到函数sin()yAx的图象;④函数sin()yAx图象的横坐标不变,纵坐标向上(0k)或向下(0k),得到sinyAxk的图象。要特别注意,若由sinyx得到sinyx的图象,则向左或向右平移应平移||个单位例:以sinyx变换到4sin(3)3yx为例sinyx向左平移3个单位(左加右减)sin3yx横坐标变为原来的13倍(纵坐标不变)sin33yx纵坐标变为原来的4倍(横坐标不变)4sin33yxsinyx横坐标变为原来的13倍(纵坐标不变)sin3yx向左平移9个单位(左加右减)sin39yxsin33x纵坐标变为原来的4倍(横坐标不变)4sin33yx注意:在变换中改变的始终是x。(5)函数性质(潜在换元思想):求对称中心、对称轴、单调区间的方法(特别注意先0)9.正余弦“三兄妹—sincossincosxxxx、”的内存联系――“知一求二”
本文标题:高一三角函数知识点梳理总结
链接地址:https://www.777doc.com/doc-4012339 .html