您好,欢迎访问三七文档
圆压轴题八大模型题(一)引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。类型1弧中点的运用在⊙O中,点C是⌒AD的中点,CE⊥AB于点E.(1)在图1中,你会发现这些结论吗?①AP=CP=FP;②CH=AD;②AC2=AP·AD=CF·CB=AE·AB.(2)在图2中,你能找出所有与△ABC相似的三角形吗?【分析】(1)①由等弧所对的圆周角相等及同角或等角的余角相等得:∠CAD=∠B=∠ACE;∠PCF=∠PFC,所以AP=CP=FP.(1)②由垂径定理和弧中点的性质得,⌒DC=⌒AC=⌒AH,再由弧叠加得:⌒CH=⌒AD,所以CH=AD.(1)③由共边角相似易证:△ACE∽△ABC,△ACP∽△ADC,△ACF∽△BCA,进而得AC2=AEAB;AC2=APAD;AC2=CFCB;(2)垂径定理的推论得:C0⊥AD,易证:Rt△ABC∽Rt△ACE∽Rt△CBE∽Rt△ACF∽Rt△BDF∽Rt△ACG∽Rt△CGF.此外还有Rt△APE∽Rt△AOG∽Rt△ABD∽Rt△CPG.运用这些相似三角形可以解决相关的计算与证明题.建议:将下列所有例题与习题转化到图1或图2上观察、比较、思考和总结。【典例】(2018·湖南永州)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.(图1)(图2)【分析】(1)延长CD与圆相交,由垂径定理得到=,再由=得到==,等弧所对的角相等,等角对等边。(2)由垂径定理的推论得OC⊥BE,再由锐角三角函数得到边BH、OH的长度,由对应边成比例得BE∥CM,由∠MCO=∠BHO=90°证得结论。证明:(1)延长CD交⊙O于G,如图,∵CD⊥AB,∴=,∵=,∴=,∴∠CBE=∠GCB,∴CF=BF;(2)连接OC交BE于H,如图,∵=,∴OC⊥BE,在Rt△OBH中,cos∠OBH==,∴BH=×6=,OH==,∵==,==,∴=,而∠HOB=∠COM,∴△OHB∽△OCM,∴∠OCM=∠OHB=90°,∴OC⊥CM,∴直线CM是⊙O的切线.【点拔】弧中点得到弧等、弦等、圆周角等,进一步引出角平分线、垂径定理、相似三角形。再结合勾股定理、同角或等角的余角相等、中位线定理,垂径定理、相似三角形的性质定理。可以组合出综合性比较强的有关的习题组。抓边等角等是关键,要善于分解图形。(图1-1)(图4)【变式运用】1.(2018·四川宜宾)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则=.()2.(2010·泸州)如图,在平行四边形ABCD中,E为BC边上的一点,且AE与DE分别平分∠BAD和∠ADC。(1)求证:AE⊥DE;(2)设以AD为直径的半圆交AB于F,连接DF交AE于G,已知CD=5,AE=8,求FGAF值。3.(2012·泸州)如图,△ABC内接于⊙O,AB是⊙O的直径,C是AD的中点,弦CE⊥AB于点H,连结AD,分别交CE、BC于点P、Q,连结BD。(1)求证:P是线段AQ的中点;(2)若⊙O的半径为5,AQ=,求弦CE的长。4.(2014•泸州)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(图1-2)(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.5.(2015•泸州)如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:四边形ABCE是平行四边形;(2)若AE=6,CD=5,求OF的长.6.如图,AB是⊙O的直径,C、P是弧AB上的两点,AB=13,AC=5.(1)如图①,若P是弧AB的中点,求PA的长;(2)如图②,若P是弧BC的中点,求PA的长.7.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.圆压轴题八大模型题(二)引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。类型2切割线互垂在Rt△ABC中,点E是斜边AB上一点,以EB为直径的⊙O与AC相切于点D,与BC相交于点F.【分析】(1)在Rt△ADO中,(10+r)2=r2+202,得r=15.(2)由DO∥BC,得DOAOBCAB,∴402440rr得:r=15.(3)在Rt△ADO中,AD=22(10)rr,DO=r,AO=10+r,由DO∥BC,ADAOACAB得,r=15.(4)连结DO,DO=BO,∠ODB=∠OBD;由DO∥BC得∠CBD=∠ODB,∴∠ABD=∠CBD.(5)由Rt△BCD∽Rt△BDE得BD2=BCBE.(6)由△ADE∽△ABD得AD2=AEAB.【分析】(7)由∠EBD=∠FBD得DE=DF,∴DE=DF,又∠DFC=∠DEG,∠C=∠DGE=90°得△DCF≌△DGE.(1)AD=20,AE=10,求r;(2)AB=40,BC=24,求r.(3)AC=32,AE=10,求r.(4)∠ABD=∠CBD.(5)DB2=BCBE;(6)AD2=AEAB.(7)△DCF≌△DGE;(8)DF2=CFBE;(9)AG:AC=1:2,BD=10.求r.(10)DC=12,CF=6,求r和BF.(11)DC=12,CF=6,求CO上任意线段的长.图(1)图(2)图(3)图(4)图(5)图(6)(8)由△CDF∽△DBE得CFDEDFBE,且DE=DF,∴DF2=CFBE.(9)由△ADG∽△ABC得AG:AC=DG:BC=1:2,设DG=k,则DC=DG=k,BC=2k,DB=5k=10,∴k=25,∴BG=BC=2k=45,由Rt△DBG∽Rt△EBD得DB2=GBEB,∴102=45EB,∴EB=55,r=552.(10)∠C=∠CFG=∠CDG=90°得矩形DGFC,∴DG=CF=6,DC=GF=GE=12,∴在Rt△GEO中,GO2+EG2=EO2,∴(r-6)2+122=r2.∴r=15.GO=15-6=9,由中位线定理得BF=2GO=18.(11)如图,在Rt△DCO中,CO=221215=341,GO=15-6=9,由D0∥CB得,6293CFCPGOOP,∴PO=35CO=9415.同理可得图中CO上其它线段的长度.【典例】(2018·四川成都)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长.【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.解:(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(图2-1)图b图a(2)连接DF,由(1)知BC为⊙O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴ABADADAF,即,AD2=AB·AF=xy,则AD=xy(3)连接EF,在Rt△BOD中,sinB=513ODOB,设圆的半径为r,可得5813rr,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=513AFAE,∴AF=AE•sin∠AEF=10×5501313,∵AF∥OD,∴501013513AGAFDGOD,即DG=1323AD,∵AD=503013181313ABAF,则DG=1330133013231323.【点拨】利用直角三角形、相似三角形的边与边之间的和差倍分关系,勾股定理的关系,比例线段的关系等设元建方程求线段的长度;因此善于分解图形,由线与角之间关系,构建基本图形模型,如母子型相似,共边角相似,8字型相似,A字型相似等。当出现求线段的一部分,还要考虑用局部占总体的比例来求解。【变式运用】1.(2018泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.2.(2018·云南昆明)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.3.(2018·江苏苏州)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.圆压轴题八大模型题(三)引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。类型3双切线组合径在直角边——直径在直角三角形的直角边上.Rt△PBC中,∠ABC=90°,Rt△PBC的直角边PB上有一点A,以线段AB为直径的⊙O与斜边相切于点D.【分析】(1)由PC=226810,△POD∽△PCB得DOPOBCPC,∴8610rr,∴r=3.(2)设BC=CD=x,在Rt△PBC中,82+x2=(4+x)2,得BC=x=6.(3)在Rt△PDO中,42+r2=(2+r)2,解得r=3.(4)由△PDA∽△PBD得:PD2=PAPB.(5)由△PDA∽△PBD得1tan2PDPAADPBPDDB,PB=8,∴PD=4,PA=2,AB=6.设AD=x,DB=2x,在Rt△ADB中,x2+(2x)2=62,∴AD=x=655.(6)由∠DEC=∠ADB=90°得OC∥AD.(7)由AB=2,则OB=1,又BC=2OC=2
本文标题:圆压轴八大模型题
链接地址:https://www.777doc.com/doc-4014454 .html