您好,欢迎访问三七文档
PureL-FunctionsfromAlgebraicGeometryoverFiniteFieldsDaqingWanDepartmentofMathematics,UniversityofCalifornia,Irvine,CA92697-3875dwan@math.uci.eduAbstract.Thissurveygivesaconcreteandintuitivelyself-containedintroductiontothetheoryofpureL-functionsarisingfromafamilyofalgebraicvarietiesde nedovera nite eldofcharacteristicp.ThestandardfundamentalquestionsinanytheoryofL-functionsincludethemeromorphiccontinuation,functionalequation,Riemannhypothesis(RHforshort),orderofzerosatspecialpointsandtheirspecialvalues.OuremphasisherewillbeonthemeromorphiccontinuationandtheRH.Thesetwoquestionscanbedescribedinageneralsetupwithoutintroducinghighlytechnicalterms.TheconstructionofthepureL-functiondependsonthechoiceofanabsolutevalueoftherationalnumber eldQ.Inthecasethattheabsolutevalueisthecomplexor‘-adicabsolutevalue(‘6=p),therationalityofthepureL-functionrequiresthefullstrengthofthe‘-adiccohomologyincludingDeligne’smaintheoremontheWeilconjectures.Inthecasethattheabsolutevalueisthep-adicabsolutevalue,thepureL-functionisnolongerrationalbutconjecturedbyDworktobep-adicmeromorphic.Thisconjecturegoesbeyondallexistingp-adiccohomologytheories.Itstruthopensupseveralnewdirectionsincludingapossiblep-adicRHforsuchpureL-functions.Theguidingprincipleofourexpositioninthispaperistodescribealltheoremsandproblemsassimpleaspossible,directlyintermsofzetafunctionsandL-functionswithoutusingcohomologicalterms.Inthecasethatthisisnoteasytodoso,wesimplygiveanintuitivediscussionandtrytoconveyalittlefeeling.Alongtheway,anumberofnaturalopenquestionsandconjecturesareraised,someofthemmaybeaccessibletocertainextentbutothersmaybesomewhatwildduetothelackofsu cientevidences.1IntroductionThemostbasicquestioninnumbertheoryistounderstandtheintegers.Inparticular,foragivenintegerN,weneedtounderstandtheabsolutevaluekNkforeveryabsolutevaluek?kontherationalnumber eldQ.Forthecomplexabsolutevalue,thisistodeterminekNk=jNj=?Forthep-adicabsolutevaluewithpbeingaprime,thisistodeterminejNjp=p ap;ap=ordp(N)=?Thislasttheoreticalquestionispracticallytheproblemoffactoringintegerswhichhasimportantapplications.Moregenerally,supposethatwearegivenasequenceofinterestinginte-gersfN1;N2; ;gInordertounderstandthissequenceofintegers,onenaturallyformsasuit-ablegeneratingfunctionZ(fNig;T)whichcontainsallinformationaboutthegivensequence.Thebasicquestionisthentounderstandtheanalyticproper-tiesofthegeneratingfunctionZ(fNig;T)withrespecttoeachabsolutevaluek?kofQ.ThisincludesthepossiblemeromorphiccontinuationZ(fNig;T)andasuitableRHaboutitszerosandpoles,forboththecomplexabsolutevalueandthep-adicabsolutevalue.Ifwehaveafamilyofsuchgeneratingfunctions,thenwewouldliketounderstanditsanalyticvariationwhentheparametervaries.Themostinterestingtypeofsequencesarisesfromcountingprimeidealsina nitelygeneratedcommutativeringorequivalentlyfromcountingrationalpointsonanalgebraicvariety.InthecaseofcountingprimenumbersintheringZofintegers,thenaturalgeneratingfunctionistheRiemannzetafunction.This rstexamplewasstudiedbyRiemannfromcomplexpointofviewandbyKummer-Kubota-Leopoldtfromp-adicpointofview.ItisthemotivatingexampleformuchofthemoderndevelopmentsongeneralHasse-Weilzetafunctionsofalgebraicvarietiesaswellastheirconjecturalp-adicanalogues.Ourinterestingsequenceofintegersinthispaperarisesfromcountingrationalpointsovervarious niteextension eldsofanalgebraicvarietyXde nedovera nite eldofcharacteristicp.TheresultinggeneratingfunctionisthezetafunctionofXwhichistheobjectofstudyinthecelebratedWeilconjectures.ThezetafunctionisarationalfunctionasprovedbyDworkusingp-adicmethods.Itsatis esasuitablecomplexand‘-adicRHasprovedbyDeligneusing‘-adicmethods,where‘isaprimenumberdi erentfromp.Thep-adicRHforthezetafunctionismorecomplicatedandremainsmysteriousingeneral.Thevariationofthewholezetafunction,whenthevarietymovesthroughanalgebraicfamily,leadstonewinterestingquestionswhichareunderstoodtocertainextent.Thezetafunctionishowevernotpure.Thatis,thezerosandpoleshavedi erentabsolutevalues.Thisisespeciallysofromp-adicpointofview.Thus,thezetafunctiondecomposesasaproductofpurepiecesde nedintermsoftheabsolutevaluesofthezerosandpoles.A nerformoftheRHistounderstandthepuritydecomposition.Afurtherquestionistounder-standthevariationofeachpurepieceofthezetafunctionwhenthevarietymovesthroughanalgebraicfamily.ThisnaturallyleadstotheconstructionofpureL-functionsarisingfromalgebraicgeometry.OurfundamentalquestionhereisthentounderstandtheanalyticpropertiesofsuchapureL-function,notablyitsmeromorphiccontinuationandRH.Sincethezetafunctionhasintegercoe cients,therearethreedi erenttypesofabsolutevalues(com-plex,‘-adicandp-adic)thatwecanchoosetowork.Theseleadtodi erentresultsanddi erenttheories.Inthecasethattheabsolutevalueisthecomplexorthe‘-adicabsolutevalue,Deligne’smaintheoremshowsthatthepureL-functionfromalgebraicgeometrycanbeidenti edwithageometricL-function,thatistheL-functionofacertaingeometricconstructible‘-adic etalesheaf.Onecanthenapplythefullmachineryof‘-adic etalecohomology.Inparticular,thepureL-functionfromalgebraicgeometryisalwaysrationalbyG
本文标题:Pure L-functions from algebraic geometry over fini
链接地址:https://www.777doc.com/doc-4024402 .html