您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 方程与不等式(组)知识点总结
方程与不等式组知识点总结方程与方程组一、一元一次方程的概念1、方程含有未知数的等式叫做方程。2、方程的解能使方程两边相等的未知数的值叫做方程的解。3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0ax0bax叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。二、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式)0(02acbxax,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中2ax叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。三、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如bax2)(的一元二次方程。根据平方根的定义可知,ax是b的平方根,当0b时,bax,bax,当b0时,方程没有实数根。2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式222)(2bababa,把公式中的a看做未知数x,并用x代替,则有222)(2bxbbxx。3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程)0(02acbxax的求根公式:)04(2422acbaacbbx4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。四、一元二次方程根的判别式根的判别式一元二次方程)0(02acbxax中,acb42叫做一元二次方程)0(02acbxax的根的判别式,通常用“”来表示,即acb42五、一元二次方程根与系数的关系如果方程)0(02acbxax的两个实数根是21xx,,那么abxx21,acxx21。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。六、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。七、二元一次方程组1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是(2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。5、二元一次方正组的解法(1)代入法(2)加减法6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。不等式(组)一、不等式的概念1、不等式用不等号表示不等关系的式子,叫做不等式。2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。求不等式的解集的过程,叫做解不等式。3、用数轴表示不等式的方法二、不等式基本性质)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。考试题型:三、一元一次不等式1、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。2、一元一次不等式的解法解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1四、一元一次不等式组1、一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组。几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。求不等式组的解集的过程,叫做解不等式组。当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。2、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
本文标题:方程与不等式(组)知识点总结
链接地址:https://www.777doc.com/doc-4026741 .html