您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 沪教版八年级下册一次函数知识点
佼立教育精品小班课程辅导讲义讲义编号辅导科目:数学年级:八年级课题一次函数知识点教学目标教学重点、难点一次函数知识点1.函数的概念:在某一变化过程中,可以取不同数值的量,叫做变量.在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常量.在某一变化过程中,有两个量,如x和y,对于x的每一个值,y都有惟一的值与之对应,其中x是自变量,y是因变量,此时称y是x的函数.注意:(1)“y有唯一值与x对应”是指在自变量的取值范围内,x每取一个确定值,y都唯一的值与之相对应,否则y不是x的函数.(2)判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x取不同的值,y的取值可以相同.例如:函数2(3)yx中,2x时,1y;4x时,1y.(3)函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系.2.数学上表示函数关系的方法通常有三种:(1)解析法:用数学式子表示函数的方法叫做解析法.如:30St,2SR.(2)列表法:通过列表表示函数的方法.(3)图象法:用图象直观、形象地表示一个函数的方法.3.关于函数的关系式(解析式)的理解:(1)函数关系式是等式.例如4yx就是一个函数关系式.(2)函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:24yx中x是自变量,y是x的函数.(3)函数关系式在书写时有顺序性.例如:31yx是表示y是x的函数,若写成13yx就表示x是y的函数.(4)求y与x的函数关系时,必须是只用变量x的代数式表示y,得到的等式右边只含x的代数式.4.自变量的取值范围:很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如1yx中,自变量x受到开平方运算的限制,有10x即1x;当汽车行进的速度为每小时80公里时,它行进的路程s与时间t的关系式为80st;这里t的实际意义影响t的取值范围t应该为非负数,即0t.在初中阶段,自变量的取值范围考虑下面几个方面:(1)整式型:一切实数(2)根式型:当根指数为偶数时,被开方数为非负数.(3)分式型:分母不为0.(4)复合型:不等式组(5)应用型:实际有意义即可5.函数图象:函数的图象是由平面直角中的一系列点组成的.6.函数图像的位置决定两个函数的大小关系:(1)图像1y在图像2y的上方21yy(2)图像1y在图像2y的下方21yy(3)特别说明:图像y在x轴上方0y;图像y在x轴下方0y7.描点法画函数图象的步骤:(1)列表;(2)描点;(3)连线.8.函数解析式与函数图象的关系:(1)满足函数解析式的有序实数对为坐标的点一定在函数图象上;(2)函数图象上点的坐标满足函数解析式.9.验证一个点是否在图像上方法:代入、求值、比较、判断10.一次函数及其性质知识点一:一次函数的定义一般地,形如ykxb(k,b是常数,0k)的函数,叫做一次函数,当0b时,即ykx,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是ykxb,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b,0k时,ykx仍是一次函数.⑶当0b,0k时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.知识点二:一次函数的图象及其画法⑴一次函数ykxb(0k,k,b为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取00,,1k,两点;②如果这个函数是一般的一次函数(0b),通常取0b,,0bk,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式ykxb的点xy,在其对应的图象上,这个图象就是一条直线l,反之,直线l上的点的坐标xy,满足ykxb,也就是说,直线l与ykxb是一一对应的,所以通常把一次函数ykxb的图象叫做直线l:ykxb,有时直接称为直线ykxb.知识点三:一次函数的性质⑴当0k时,一次函数ykxb的图象从左到右上升,y随x的增大而增大;⑵当0k时,一次函数ykxb的图象从左到右下降,y随x的增大而减小.y2y1x2x1yxO知识点四:一次函数ykxb的图象、性质与k、b的符号一次函数0kkxbkk,b符号0k0k0b0b0b0b0b0b图象OxyyxOOxyyxOOxyyxO性质y随x的增大而增大y随x的增大而减小字母k,b的作用:k决定函数趋势,b决定直线与y轴交点位置,也称为截距.倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴图像的平移:b>0时,将直线y=kx的图象向上平移b个单位,对应解析式为:y=kx+bb<0时,将直线y=kx的图象向下平移b个单位,对应解析式为:y=kx-b口诀:“上+下-”将直线y=kx的图象向左平移m个单位,对应解析式为:y=k(x+m)将直线y=kx的图象向右平移m个单位,对应解析式为:y=k(x-m)口诀:“左+右-”知识点五:用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.⑵用待定系数法求函数解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将xy,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.5≤x≤9.求此一次函数的解析式.11.直线11bxky(01k)与22bxky(02k)的位置关系(1)两直线平行21kk且21bb(2)两直线相交21kk(3)两直线重合21kk且21bb(4)两直线垂直121kk12.一次函数与一元一次方程的关系:直线ybk0kx()与x轴交点的横坐标,就是一元一次方程b0(0)kxk的解.求直线ybkx与x轴交点时,可令0y,得到方程b0kx,解方程得xbk,直线ybkx交x轴于(,0)bk,bk就是直线ybkx与x轴交点的横坐标.13.一次函数与一元一次不等式的关系:任何一元一次不等式都可以转化为ab0x或ab0x(ba、为常数,0a)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.
本文标题:沪教版八年级下册一次函数知识点
链接地址:https://www.777doc.com/doc-4031355 .html