您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业文档 > 公考数学运算、应用题400道详解
【1】、从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?A.40;B.41;C.44;D.46;【2】、从12时到13时,钟的时针与分针可成直角的机会有多少次?A.1;B.2;C.3;D.4;【3】、四人进行篮球传接球练习,要求每人接到球后再传给别人,开始由甲发球,并作为第一次传球。若第五次传球后,球又回到甲手中,则共有传球方式多少种:A.60;B.65;C.70;D.75;【4】一车行共有65辆小汽车,其中45辆有空调,30辆有高级音响,12辆兼而有之.既没有空调也没有高级音响的汽车有几辆?A.2;B.8;C.10;D.15;【5】一种商品如果以八折出售,可以获得相当于进价20%的毛利,那么如果以原价出售,可以获得相当于进价百分之几的毛利A.20%;B.30%;C.40%;D.50%;【6】有两个班的小学生要到少年宫参加活动,但只有一辆车接送。第一班的学生做车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫。学生步行速度为每小时4公里,载学生时车速每小时40公里,空车是50公里/小时,学生步行速度是4公里/小时,要使两个班的学生同时到达少年宫,第一班的学生步行了全程的几分之几?(学生上下车时间不计)A.1/7;B.1/6;C.3/4;D.2/5;【7】一个边长为8的正立方体,由若干个边长为1的正立方体组成,现在要将大立方体表面涂漆,问一共有多少小立方体被涂上了颜色?A.296;B.324;C.328;D.384;【8】现有200根相同的钢管,把它们堆放成正三角形垛,使剩余的钢管尽可能的少,那么乘余的钢管有()A.9;B.10;C.11;D.12;【9】某医院内科病房有护士15人,每两人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次这两人再同值班,最长需()天。A.15;B.35;C.30;D.5;【10】有从1到8编号的8个求,有两个比其他的轻1克,用天平称了三次,结果如下:第一次1+23+4第二次5+67+8第三次1+3+5=2+4+8,求轻的两个球的编号!A:1和2;B:1和5;C:2和4;D:4和5;【11】用计算器计算9+10+11+12=?要按11次键,那么计算:1+2+3+4+……+99=?一共要按多少次键?【12】已知一对幼兔能在一月内长成一对成年兔子,一对成年兔子能在一月内生出一对幼兔。如果现在给你一对幼兔,问一年后共有多少对兔子?【13】计算从1到100(包括100)能被5整除得所有数的和?()A.1100;B.1150;C.1200;D.1050;【14】1/(12×13)+1/(13×14)+......+1/(19×20)的值为:(0)A.1/12;B.1/20;C.1/30;D.1/40;【15】如果当“张三被录取的概率是1/2,李四被录取的概率是1/4时,命题:要么张三被录取,要么李四被录取”的概率就是()A.1/4B.1/2C.3/4D.4/4【16】一个盒子里面装有10张奖券,只有三张奖券上有中奖标志,现在5人每人摸出一张奖券,至少有一人的中奖概率是多少?()A.4/5;B.7/10;C.8/9;D.11/12;【17】某电视台的颁奖礼品盒用如下方法做成:先将一个奖品放入正方体内,再将正方体放入一个球内,使正方体内接于球;然后再将该球放入一个正方体内,球内切于正方体,再讲正方体放入一个球内,正方体内接于球,.......如此下去,正方体与球交替出现.如果正方体与球的个数有13个,最大正方体的棱长为162cm.奖品为羽毛球拍,篮球,乒乓球拍,手表,项链之一,则奖品可能是[](构成礼品盒材料的厚度可以忽略不计)A.项链;B.项链或者手表;C.项链或者手表或者乒乓球拍;D.项链或者手表或者乒乓球拍或者篮球【18】银行存款年利率为2.5%,应纳利息税20%,原存1万元1年期,实际利息不再是250元,为保持这一利息收入,应将同期存款增加到()元。A.15000;B.20000;C.12500;D.30000;【19】某校转来6名新生,校长要把他们安排在三个班,每班两人,有多少中安排方法?【20】一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A.10;B.8;C.6;D.4【21】用1,2,3,4,5这五个数字组成没有重复数字的自然数,从小到大顺序排列:1,2,3,4,5,12,......,54321。其中,第206个数是()A、313;B、12345;C、325;D、371;【22】100张骨牌排成一列编号为1-100第一次拿走奇数位上的牌,第二次在从剩余的牌中拿走所有奇数位上的牌,依此类推。问最后剩下的一张牌是第几张?【23】父亲把所有财物平均分成若干份后全部分给儿子们,其规则是长子拿一份财物和剩下的十分之一,次子拿两份财物和剩下的十分之一,三儿子拿三份财物和剩下的十分之一,以此类推,结果所有儿子拿到的财物都一样多,请问父亲一共有几个儿子?(c)A.6;B.8;C.9;D.10【24】整数64具有可被他的个位数整除的性质,问在10到50之间有多少整数有这种性质?【26】时钟指示2点15分,它的时针和分针所成的锐角是多少度?A.45度;B.30度;C.25度50分;D.22度30分;【27】一列快车和一列慢车相对而行,其中快车的车长200米,慢车的车长250米,坐在慢车上的旅客看到快车驶过其所在窗口的时间是6秒钟,坐在快车上的旅客看到慢车驶过其所在窗口的时间是多少秒钟?A.6秒钟;B.6.5秒钟;C.7秒钟;D.7.5秒钟【28】有8种颜色的小球,数量分别为2、3、4、5、6、7、8、9,将它们放进一个袋子里面,问拿到同颜色的球最多需要几次??A、6;B、7;C、8;D、9【29】已知2008被一些自然数去除,得到的余数都是10,那么,这些自然数共有(b)A.10;B.11;C.12;D.9【30】真分数a/7化为小数后,如果从小数点后第一位数字开始连续若干数字之和是1992,那么A的值是()A.6;B.5;C.7;D.8;【31】从1到500的所有自然数中,不含有数字4的自然数有多少个?()。A.323;B.324;C.325;D.326;【32】一次数学竞赛,总共有5道题,做对第1题的占总人数的80%,做对第2题的占总人数的95%,做对第3题的占总人数的85%,做对第4题的占总人数的79%,做对第5题的占总人数的74%,如果做对3题以上(包括3题)的算及格,那么这次数学竞赛的及格率至少是多少?【33】A、B两地以一条公路相连。甲车从A地,乙车从B地以不同的速度沿公路匀速相向开出。两车相遇后分别掉头,并以对方速率行进。甲车返回A地后又一次掉头以同样的速率沿公路向B地开动。最后甲、乙两车同时到达B地。如果最开始时甲车的速率为X米/秒,则最开始时乙的速率为:()A.4X米/秒;B.2X米/秒;C.0.5X米/秒;D.无法判断;【34】某项工程,小王单独做需20天完成,小张单独做需30天完成。现在两人合做,但中间小王休息了4天,小张也休息了若干天,最后该工程用16天时间完成。问小张休息了几天?()A.4天;B.4.5天;C.5天;D.5.5天;【35】在一次国际会议上,人们发现与会代表中有10人是东欧人,有6人是亚太地区的,会说汉语的有6人。欧美地区的代表占了与会代表总数的23以上,而东欧代表占了欧美代表的23以上。由此可见,与会代表人数可能是:()A、22人;B、21人;C、19人;D、18人;【36】在一条长100米的道路上安装路灯,路灯的光照直径是10米,请问至少要安装多少盏灯?()A.11;B.9;C.12;D.10;【37】一个时钟从8点开始,它再经过多少时间,时针正好与分针重合?【38】一批商品,按期望获得50%的利润来定价。结果只销掉70%的商品,为尽早销掉剩下的商品,商店决定按定价打折扣销售,这样所获得的全部利润,是原来的期望利润的82%,问打了多少折扣?()A.2.5折;B.5折;C.8折;D.9折;【39】从1985到4891的整数中,十位数字与个位数字相同的数有多少个?()A.181,B.291,C.250,D.321【40】某项工程,小王单独做需20天完成,小张单独做需30天完成。现在两人合做,但中间小王休息了4天,小张也休息了若干天,最后该工程用16天时间完成。问小张休息了几天?(、)A.4天;B.4.5天;C.5天;D.5.5天;【41】A、B两村相距2800米,甲从A村出发步行5分钟后,乙骑车从B村出发,又经过10分钟两人相遇,若乙骑车比甲步行每分钟多行160米,则甲步行速度为每分钟()米。【42】有甲乙两只蜗牛,它们爬树的速度相等,开始,甲蜗牛爬树12尺,然后乙蜗牛开始爬树,甲蜗牛爬到树顶,回过头来又往回爬到距离顶点1/4树高处,恰好碰到乙蜗牛,则树高()尺【43】如果生儿子,儿子占2/3母亲占1/3,如果生女儿,女儿占1/3,母亲占2/3,生了一个儿子和一个女儿怎么分?【44】甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇?【45】某学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?()A.256人;B.250人;C.225人;D.196人;【46】一个班有50个学生。第1次考试有26人得到满分,第2次考试有21人得到满分。已知2次考试都没得到满分的人为17人,求2次考试都得到满分的人数。分析:令2次都得满分的人为x。班级学生总数=第1次满分且第2次不是满分的人数+第2次满分且第1次不是满分的人数+2次都满分的人数+2次都未满分的人数。第1次满分且第2次不是满分的人数=26-x,第2次满分且第1次未满分的人数=21-x,因此50=(26-x)+(21-x)+x+17,x=14【47】某公共汽车从起点开往终点站,途中共有13个停车站。如果这辆公共汽车从起点站开出,除终点站外,每一站上车的乘客中,正好各有一位乘客从这一站到以后的第一站。为了是每位乘客都有座位,那么,这辆公共汽车至少应有多少个座位?()A:48;B:52;C:56;D:54分析:选C,起始站14人,这样才能保证保证到终点前,每一站都会有人下车,并且,题目所求为至少的座位数,所以选14,否则的话可以是15、16。。。。。【48】有一路电车从甲站开往乙站,每5分钟发一趟,全程走15分钟。有一人从乙站骑自行车沿电车路线去甲站。出发时,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,到站时恰好有一辆电车从甲站开出,那么,他从乙战到甲站共用多少分钟?()A:40;B:6;C:48.15;D:45分析:选A,每五分钟发一辆,全程15分钟,又人出发时刚有一辆到达乙站=在途中的有2辆,若令到达乙站的为第一辆车,则刚要从甲站出发的就是第四辆车。=又人在途中,共遇到10辆车,且人到甲时,恰有一辆刚从甲站发出(前车已发出5分钟)=除了第二辆、第三辆外,又有8辆车已发出(最后发出的也已有5分钟),有1辆刚要发出=因此,人从乙到甲共用时8×5=40=选A【49】某铁路线上有25个大小车站,那么应该为这条路线准备多少种不同的车票?()A.625;B.600;C.300;D.450;分析:选B,共有25个车站,每个车站都要准备到其它车站的车票(24张),则总数为24×25=600【50】5万元存入银行,银行利息为1.5%/年,请问2年后,利息是多少?()A.1500;B.1510;C.1511;D.1521;分析:选C,50000*(1+1.5%)*(1+1.5%)-50000=1511,第一年的利息在第二年也要算利息的。【51】一个圆能把平面分成两个区域,两个圆能把平面分成四个区域,门四个圆最多能把平面分成多少个区
本文标题:公考数学运算、应用题400道详解
链接地址:https://www.777doc.com/doc-4045440 .html