您好,欢迎访问三七文档
机械密封知识何兵2014年3月26日12一、密封原理和特点1.结构第一节机械密封原理和基本结构型式(1)组成1234567891-静环座2-动环辅助密封圈3-静环辅助密封圈4-防转销5-静环6-动环7-弹簧8-弹簧座9-紧定螺钉31234567891-静环座2-动环辅助密封圈3-静环辅助密封圈4-防转销5-静环6-动环7-弹簧8-弹簧座9-紧定螺钉(2)固定紧定螺钉把弹簧及动环部分固定在轴上静环的周向固定:静环上开槽,然后通过防转销与静环座固定。而静环座又与设备联在一起。42.密封原理机械密封主要是将较易泄漏的轴向密封改为不易泄漏的端面密封。如图3-1所示,当轴转动时,带动了弹簧座、弹簧压板、动环等零件一起转动,由于弹簧力的作用使动环紧紧压在静环上。轴旋转时,动环与轴一起旋转,而静环则固定在座架上静止不动,这样动环与静环相接触的环形密封面阻止了介质的泄漏。1234567891-静环座2-动环辅助密封圈3-静环辅助密封圈4-防转销5-静环6-动环7-弹簧8-弹簧座9-紧定螺钉5机械密封一般有四个密封处:A、动环与静环之间的密封——动密封B、动环与轴或轴套之间的密封——相对静密封C、静环与静环座之间的密封——静密封D、静环座(压盖)与设备之间的密封——静密封1234567891-静环座2-动环辅助密封圈3-静环辅助密封圈4-防转销5-静环6-动环7-弹簧8-弹簧座9-紧定螺钉机械密封的主要特点主是密封面为垂直于旋转轴线的端面。ABCD63.基本构件(1)动环和静环材料较好的耐磨性,能有减摩作用(即f要小)良好的导热性,把摩擦热及时传出孔隙率小,结构紧密,以免介质在压力下有渗透。动、静环是一对摩擦副,它们的硬度各不相同。一般动环的硬度比静环的硬度大。动环的材料可用铸铁、硬质合金、高合金钢等,在有腐蚀介质的条件下可用不锈钢或不锈钢表面(端面)堆焊硬质合金、陶瓷等;静环的材料可用铸铁、磷青铜、巴氏合金等,也常用浸渍石墨或填充聚四氟乙烯。7配对方法:当介质粘度小,润滑性差时,采用金属配各种非金属(因为大多数非金属材料都有自润滑作用);当介质粘度较大时,采用金属与金属配对。加工精度由于摩擦副的端面要起密封作用,并且摩擦环要相互滑动摩擦,故端面的加工精度影响着密封的效果和使用寿命。8(2)弹簧加荷装置(3)辅助密封元件型式:O形、V形、矩形等作用:产生压紧力,保持动、静环端面紧密接触,且是一个缓冲元件,可以补偿轴的跳动及加工误差而引起的摩擦面不贴合。把弹簧施加到密封环带单位面积上的压紧力称为弹簧比压ps,那么ps的作用有两点:①起动停车或介质压力波动时,使密封面维持足够的比压;②克服密封圈与轴的摩擦力,保持动环沿轴向移动,以补偿端面的磨损。因此有人把机械密封定义为:机械密封是一种带有缓冲机构,并通过与旋转轴大体垂直做相对转动的密封端面进行密封的装置。9优点①密封可靠,在一个较长的使用期中,不会泄漏或很少泄漏;②使用寿命长,正确选择摩擦副材料和比压的机械密封可用2—5年,最长的达9年;③维修周期长,在正常工作的情况下,不需要维修;④摩擦功率消耗少;⑤轴或轴套不受磨损;⑥对旋转轴的振摆和轴对壳体孔的偏斜不敏感;⑦适用范围广,能用于低温、高温、高真空、高压、各种转速以及各种腐蚀、易燃、易爆、有毒介质的密封。4.机械密封的优缺点:(与软填料密封比较)缺点①结构较复杂,对制造加工要求高;②安装与更换比较麻烦,要求工人有一定的安装技术水平;③发生偶然事故时,处理比较困难;④一次性投资高。10比较软填料密封机械密封泄漏量180~450ml/h一般为软填料密封的1%摩擦功率损失机械密封为软填料密封的10~50%轴磨损有磨损,用久后要更换几乎无磨损维护及寿命要经常维护,更换填料,个别情况每班换一次寿命很长,很少需要维修高参数高压、高温、高真空、高转速、大直径密封不能解决可以加工及安装加工苛求一般,填料更换方便动、静环表面粗糙度及平直度要求高,不易加工,成本高,装拆不便对材料要求一般动、静环要求较高表3-1机械密封与填料密封的比较11二、结构类型1、内流式和外流式2、内装式和外装式3、旋转式与静止式5、单弹簧与多弹簧6、单端面、双端面和多端面4、平衡型和非平衡型12按介质泄漏方向分为内流式和外流式。内流式:介质沿半径方向从端面外周向内泄称为内流式。外流式:介质沿半径方向从端面内周向外泄称为外流式。内流式的泄漏方向与离心力方向相反,离心力阻碍着流体的泄漏,因而内流式泄漏比外流式泄漏量小。于是,有固体颗粒的情况尤其应该采用内流式。这样可防止固体颗粒进入摩擦面。1、内流式和外流式(图3-2)13按弹簧是否与介质接触分为内装式和外装式。内装式是弹簧置于工作介质之内,外装式是弹簧置于工作介质之外。2、内装式和外装式(如图3-3)14外装式特点:外装式机械密封弹簧不与介质接触,可以用于强腐蚀、高粘度、易结晶以及含有固体颗粒的介质等工况条件。但其动环端面在介质压力的作用下存被打开的趋势,因此使用压力比较低,一般应不大于1Mpa。内装式机械密封则可以满足较高压力的工况要求。内装式受力情况比较好,刚开车时介质压力较低,由不太大的弹簧力即可对摩擦面构成初始的密封,此时因端面比压较小,容易形成液膜。内装式端面比压随介质压力增在而增大,因而增加了密封的可靠性。一般情况下内装式(内流式)的介质泄漏方向与离心力方向相反,泄漏情况较外装式好。所以在介质无腐蚀以及不影响弹簧机能时,应尽可能采用内装式(内流式)结构。15按弹簧的运转状态分为旋转式与静止式。旋转式:即是弹簧装置及轴的结构简单,径向尺寸较小。高转速情况下,弹簧及其它转动零件产生的离心力很大,动平衡要求高,有的介质经强烈搅拌后易结晶,对于这种情况宜采用静止式较适宜。3、旋转式与静止式16主要按介质作用在端面的载荷程度分。4、平衡型和非平衡型当不计摩擦副间反压力及密封圈摩擦力时,作用在端面上的比压为:KPPPddddPPsbsc)()(2122222式中:Pc—端面比压,是指作用于密封面环带的单位面积上净剩的闭合力,它主要取决于密封结构型式和介质压力。P——介质压力Pn——弹簧比压(弹簧施加到密封环带单位面积上的压紧力)17AAKddddeb2122222其中:Ae——流体介质作用的有效载荷面积A——接触面积(密封环带面积)K——载荷系数,动环的轴向受压面积与端面接触面积之比。d1、d2——密封环带内、外径db——平衡直径(介质压力在补偿环辅助密封处的有效作用直径)减小动环的轴向受压面积,可将流体压力施加在摩擦副端面上的载荷部分甚至全部卸除。这一方法称为卸荷。因此K表示的是介质产生的比压加到摩擦副上的载荷程度。根据d1、d2和db的不同,K有不同的值。(图3-4)AAAPAPAAAPK=0K1K00K1图3-418AAAPAPAAAPK=0K1K00K1图3-419K≥1非平衡型:介质作用于单位密封面上的轴向压力大于或等于密封腔内介质压力,K=1.1~1.20K1部分平衡型:介质作用于单位密封面上的轴向压力小于密封腔内介质压力,K=0.6~0.9K=0全平衡型:介质对密封面无轴向力K0过平衡型:介质对密封面为推开力令β=1-K,称β为平衡系数,它表示介质产生的比压在摩擦副上的卸荷程度。由前面Pc公式可知,β愈大,K愈小,由于介质引起的端面比压愈小,虽然磨损很小,但不易保证密封;反之β愈小,K愈大,端面磨损加剧并产生热,甚至有咬坏的危险,那密封就失效了。因此根据经验与试验,β不宜超过0.5。20单弹簧又称大弹簧,即是在密封装置中仅有一个弹簧与轴同中心安装。多弹簧又称小弹簧,即是在密封装置中有数个弹簧沿圆周均匀分布。一般说负荷较轻而且大量生产的密封采用单弹簧为佳,小量生产且在严格的条件下使用时,则都采用多弹簧。5、单弹簧与多弹簧21按摩擦面对数分为单端面、双端面和多端面。单端面:指在密封机构中仅有一对摩擦副。双端面:指在密封机构中有两对摩擦副,且两对摩擦副处于相同密封液压力下(图3-5)。密封机构中有两对以上的摩擦副且密封腔的压力逐渐降低,根据摩擦副的对数分别称为双端面、三端面和多端面。6、单端面、双端面和多端面22从结构比较来看,单端面比双端面简单,在制造和装拆上较容易,因而使用很普遍。双端面因要通入带液体(封液)至密封腔内起“封堵”和润滑作用,就需另设一套装置。单端面只适用于一般场合。双端面适用于强腐蚀、主温、带悬浮颗粒及纤维的介质、气体介质、易燃易爆介质、易挥发粘度低的介质、高真空、贵重物料及要求介质与空气隔绝且允许内漏的情况。231、分析密封使用条件第二节机械密封的选用(1)工作参数压力、温度、转速、轴径(2)介质特性浓度、粘度、腐蚀性、有无固体颗粒及纤维杂质、是否汽化或结晶(3)主机工作性质与环境条件连续或间隙操作242、主机对密封的要求①密封性②寿命③结构尺寸的限制④可靠性和稳定性3、密封类型与材料的选择4、密封系统的综合措施及加工、安装、维修、经济效益等考虑5、结构形式的选择251)工作压力:密封的工作压力是指密封腔处的压力。当P介>0.5~0.7MPa时,需采用部分平衡型。由前面可知,K(载荷系数)表示介质产生的比压加到摩擦副上的载荷程度,P介增加,则K增加,据资料介绍,当P=0.5~0.7MPa时,用部分平衡型就能保证密封(即K<1),若此时采用非平衡型,则K很大,介质产生的比压加到摩擦副上的载荷程度也很大,从而密封端面磨损,发热,密封失效。尤其是对于介质粘度低,润滑性能差者,往往压力达0.3~0.5MPa以上就应考虑选择部分平衡型;若是超高压、高压,就应选双端面或多端面密封使之逐级降压。263)圆周速度当V﹥30m/s时可选用静止型,即是高速又是高压力时,可考虑用流体动压型机械密封。4)介质的腐蚀性及易燃易爆、结晶等性质:对于腐蚀较弱,选内装式较好,因结构上端面受力和泄漏方向比外装式合理,反之,选用外装式。外装外流式介质压力不起自紧作用,故适用于压力较低的情况(0.2~0.3MPa)2)温度超出120℃是高温。27一、密封环端面发热机械密封的摩擦副就是动环和静环,其端面贴紧且一个静止,一个旋转,它们之间存在相对运动,所以会产生摩擦和磨损,同时会伴有热量的产生。如果摩擦产生的热量越多,密封的工作PV值就越大。当然摩擦热除与PV值有关外,还与摩擦系数及端面面积有关。假设端面比压是均布的,则摩擦热第三节冷却、冲洗与安装、使用VAfPQc28热量的传递有三种方式:对流、间壁导热、辐射。显然机械密封端面的摩擦热就是以这三种方式传递出去的。如果密封环向周围散失的热量与产生的摩擦热相平衡,则可得到一个稳定的温度值。对于普通机械密封,泄漏量较小,它带走的热量可以忽略,那么摩擦热主要是由轴导入动静环,再由动静环传给周围介质,即:lTAQl△T------环端面温度与周围介质温度差l------温度降方向的壁厚,轴向为环厚h,径向为端面宽度b。显然,λ越小,传出的热量就少,温升越高,PV值就越大;反之,λ越大,传出的热量就多,温升越低,PV值就越小。因此要选择导热系数大的材料。29二、冷却、冲洗方法及系统设计如果密封环材料的导热性差,介质温度又高,或PV值比较高的情况下,端面间的大量热量不能及时导出,必然引起端面温度急剧上升。其结果可能造成端面间液膜汽化,恶化润滑条件,甚至完全处于干摩擦状态,这不仅使磨损加剧,还会导致密封环的热裂、变形等等。因此只是依靠选择耐高温、导热性好的密封环材料或仅从结构上考虑,都很难达到预期的效果。合理的方法就是强化冷却,使端面摩擦热及时导出。使端面冷却的方式主要有三种:301、端面直接冷却将密封介质从系统中高于密封腔压力处引出,通过接管引入密封腔,对于密封介质的温度高或含固体粒子的场合,可在管路上设置冷却器或过滤器,使进入密封腔内的介质净化并降低温度。(1)闭路自冲洗(图3-24,a)311、端面直接冷却将密封腔内的介质引入主机低压侧,使介质通过密封腔进行自循环而带走摩擦热(图3-24,b),这种方法适用于密封腔压力与主机工作压力比较接近的场合。(2
本文标题:机械密封知识
链接地址:https://www.777doc.com/doc-4050388 .html