您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 第09章(压杆稳定)-06
二、压杆失稳与临界压力:P稳定平衡FFcrPF=Fcr随遇平衡FFcr不稳定平衡PFwxM)(假设压力F已达到临界值,杆处于微弯状态,如图,从挠曲线入手,求临界力。EIMw(1)弯矩:(2)挠曲线近似微分方程:0wEIFw02wkw§9–2两端铰支细长压杆的临界压力wEIFwlF=FcrF=FcrFwFMw,2EIFk令wxxw(3)微分方程的解:(4)确定积分常数:由边界条件x=0,w=0;x=l,w=0确定kxBkxAwcossin,0,0,0Bwx得由0Ankl,2222nlkkxAwsin即0sin,0,klAwlx得由,2EIFk由0sinkl∵222lEInF)3,2,1,0(n上式称为两端铰支压杆临界力的欧拉公式22lEIπFcr临界力Fcr是微弯下的最小压力,故,只能取n=1若是球铰,式中:I=IminyzFyzyIIminkxAwsin压杆的挠曲线:曲线为一正弦半波,A为幅值,但其值无法确定。xlAsinF=FcrxxyvlF=Fcr§9–3其他支座条件下细长压杆的临界压力1.一端固定、一端自由Fl22)2(lEIπFcr2l2l2.一端固定一端铰支F0.7llEIMwC—挠曲线拐点22)7.0(lEIπFcr03.两端固定Fl22)5.0(lEIπFcrlFl/2—长度系数(或约束系数)。l—相当长度22)(lEIFcr上式称为细长压杆临界压力的一般形式欧拉公式其它约束情况下,压杆临界力的欧拉公式两端铰支一端固定一端铰支两端固定一端固定一端自由=1=0.7=0.5=2Fl0.5l[例1]求细长压杆的临界压力22)5.0(lEIπFcrPMkwkwEI0220)(MFwxMwEIEIFk2:令PMkxBkxAw0sincos0,;0,0wwLxwwx解:变形如图,其挠曲线近似微分方程为:边界条件为:试由挠曲线近似微分方程,导出下述细长压杆的临界力公式。FLFM0xFM0yxFM0FM0y[例2],0,0,0,,0,00BwxFMAwx得由得由nkl2kxBkkxAkwFMkxBkxAwcossinsincos0kxkFMwFMkxFMwsincos000nkLklwlxnkLklwlx0sin,0,2,1cos,0,即得由即得由2222)2/(4LEILEIFcr为求最小临界力,F应取除零以外的最小值,即取:n=1所以,临界力为:2nkL=0.5222224LEInEIkFEIFk又22224Lnk)1017.4121050433min(mmI2min2cr)(lEIF[例3]求细长压杆的临界力。解:2332)5007.0(1017.4102005010Pll=0.5m,E=200GPa(kN)14.67(N)1014.67340mincm89.3yII2min2)(lEIFcr解:2432)5002(1089.310200Fl(45456)等边角钢已知:压杆为Q235钢,l=0.5m,E=200GPa,求细长压杆的临界压力。441089.3mm(kN)8.76若是Q235钢,σs=235MPa,则杆子的屈服载荷:AFss(kN)119可见杆子失稳在先,屈服在后。[例3]xxx0x1x1y0y0z0x0(N)108.763210076.5235(N)101193四、小结scrbas222Ecr≥1,大柔度杆2≤≤1,中柔度杆bacr≤2,粗短杆PE21ilAIiAFcrcr一压杆长l=1.5m,由两根56568等边角钢组成,两端铰支,压力P=150kN,材料为Q235钢,E=200GPa,P=200MPa,S=235MPa,a=304MPa,b=1.12MPa,nst=2,试校核其稳定性。(一个角钢A1=8.367cm2,Ix=23.63cm4,Ix1=47.24cm4,z0=1.68cm),zyII解:两根角钢图示组合之后4cm26.4763.2322xyII[例4]yzxxx0x1x1y0y0z0x04cm486.9424.47221xzII367.8226.47cm68.1AIiyP21EbacrQ235钢:AFcrcrstn∴杆子满足稳定性要求。il200102003299bas2123.8912.1304)MPa(204FFncr68.115013.8912.12353026.61)27.836(204)kN(34127.2150341图示立柱,l=6m,由两根10号槽钢组成,下端固定,上端为球铰支座,材料为Q235钢,E=200GPa,P=200MPa,试问(1)a取多少时立柱的临界压力最大;(2)若nst=3,则许可压力值为多少?)cm52.1,cm74.12021zA41cm6.3963.19822zzII])2/([22011azAIIyy])2/52.1(74.126.25[22a解:两根槽钢图示组合之后,Pl[例5]y1C1z0z14141cm6.25,cm3.198(yzII时合理;得当zyIIcm32.4ayzailPE21求临界压力:1AFcrcr(kN)8.443大柔度杆,由欧拉公式求临界力。AIlz74.1226.3966007.05.106AE2212742)5.106(10200232(N)108.44333.992001020032stcrnFF稳定条件:stcrnFF∴)kN(14838.443∴许可压力F≤148kN22)(lEIFcr(kN)8.443或:23432)1067.0(106.39610200(N)108.4433[例4]已知F=12kN,斜撑杆CD的外径D=45mm,内径d=40mm,材料为Q235钢,E=200GPa,P=200MPa,S=235MPa,a=304MPa,b=1.12MPa,稳定安全系数nst=2.5,试校核斜撑杆的稳定性。AB45°1mFCD1mAB45°1mFC1mFN,0AM0245sin1NFF45cos2FFN24FkN95.33解:(mm)15AIi4)(64)(2244dDdD422dDil151012133.94P21E200102003299bacrAFcrcrstn∴斜撑杆CD不满足稳定性要求。3.9412.1304)MPa(4.198FFncr4)4045(4.19822)kN(8448.295.3384bas212.12353041.6112[刘题9.13]P313工字形截面连杆,材料Q235钢,两端柱形铰,在xy平面内发生弯曲,两端可认为铰支,在xz平面发生弯曲,两端可认为固定,已知连杆所受最大轴向压力为465kN,试确定其工作安全因数。l=3100yxxzzy961408514[刘题9.13]P313工字形截面连杆,材料Q235钢,两端柱形铰,在xy平面内发生弯曲,两端可认为铰支,在xz平面发生弯曲,两端可认为固定,已知连杆所受最大轴向压力为465kN,试确定其工作安全因数。l=3100yxxzzy961408514,mm64702A,mm1040744yI44mm101780zI解:AIizzAIiyyzy(1)计算连杆的柔度zzzil在xy平面内失稳0.59l=3100yx5.5231001mm5.5264701017804mm1.256470104074zy∴xz在xz平面内失稳yyyil8.61xz平面内先失稳zzzil在xy平面内失稳0.595.52310011.2531005.0zy∴在xz平面内失稳yyyil8.61xz平面内先失稳zzzil在xy平面内失稳0.595.52310011.2531005.0(2)求连杆的临界压力8.61y材料Q235钢,1=100,2=61,y接近2,属于强度问题AFscr6470235)kN(1520[单题9-16]AB梁为No16号工字钢,I=1130cm4,W=141cm3,A=28.27cm2,BC柱直径d=60mm,材料均为Q275钢,E=205GPa,S=275MPa,a=338MPa,b=1.22MPa,1=90,2=50,强度安全因数n=2,稳定安全因数nst=3,求载荷F的许用值。AB1m1mFC1m60No16AB1m1mFBFNFNlfB383NEIlFEIFl653NEAlF312.0NFF0.312Fl0.376Fl+-][WMmaxmaxns][2275)MPa(5.137≤][376.0WFl)kN(6.51FAIiil12AFcrcrF是中长杆,用经验公式:)kN(7277773312.0727mm154604d)7.6622.1338(NcrFFstnFF312.0cr≥stnF312.0cr≤)kN(4602所以,许用值[F]=kN6.5115100017.66[例9]AB梁16号工字钢,CD柱63×63×5角钢。q=48kN/m,材料为Q235钢,E=200GPa,P=200MPa,S=235MPa,a=304MPa,b=1.12MPa,n=1.4,nst=2.5,问梁和柱是否安全。AB2m2m48kN/mCDyz102mAB2m2m48kN/mCDAB2m2m48kN/mCFNlfC483NEIlFEIql384541NEAlF)kN(3.118NFAB2m2m48kN/mCNC)MPa(1.15837kN37kN60kN60kN+–m)14.14(kNm)14.14(kNm22.3kNWMmaxmax∴梁安全。maxns][4.1235)MPa(168mm42.192143.6217.23AIiy10342.19200011ilyz10100)23.614(10310200232AFcrcrNFFncrstn所以,柱不安全。是细长杆,用欧拉公式:)kN(6.2289.13.1186.228PE211
本文标题:第09章(压杆稳定)-06
链接地址:https://www.777doc.com/doc-4071109 .html