您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 28.2.2解直角三角形应用举例(2).
解直角三角形应用举例(2)(1)两锐角这间的关系∠A+∠B=90°(2)两边之间的关系:a2+b2=c2(3)边角之间的关系AbBcAcatancossincossintanbcAcBaBBbAbBaAacsincoscossin温故而知新caAA斜边的对边sincbBB斜边的对边sincbAA斜边的邻边coscaBB斜边的邻边cosbaAAA的邻边的对边tanabBBB的邻边的对边tanAB∠A的对边aC∠A的邻边b┌斜边c如图:在Rt△ABC中,除直角C外的5个元素之间有如下关系:利用上面的关系,知道其中的2个元素(至少有一个是边),就可以求出其余的3个未知元素。仰角、俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上向下看,视线与水平线的夹角叫做俯角水平线视线视线俯角仰角铅垂线【探究1】直升飞机在跨江大桥AB的上方P点处,此时飞机离地面的高度PO=450米,且A、B、O三点在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的长AB.βαPABO450米合作与探究解:由题意得,30,45PAOPBOtan30,tan45POPOOAOB4504503,tan30OA450450tan45OB(4503450)()ABOAOBm(4503450).m答:大桥的长AB为PABO30°45°400米答案:米)2003200(合作与探究变题1:直升飞机在长400米的跨江大桥AB的上方P点处,且A、B、O三点在一条直线上,在大桥的两端测得飞机的仰角分别为30°和45°,求飞机的高度PO.45°30°POBA200米C答案:米)3003100(合作与探究变题2:直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和60°,求飞机的高度PO.45°30°200米POBAD答案:米)3100300(合作与探究变题3:直升飞机在高为200米的大楼AB左侧P点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水平距离.合作与探究图5QBCPA45060°30°答案:AB≈520(米)变题4:(2008桂林)汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图5).求A、B两个村庄间的距离.(结果精确到米,参考数据).21.41431.732,βαABO45°30°200米POBD归纳与提高45°30°PA200米CBOβαABO45°30°45045°30°40060°45°20020045°30°练习1、热气球的探测器显示,从热气球看一栋高楼顶部的仰角为300,看这栋楼底部的俯角为600,热气球与离楼的水平距离为120m,这栋高楼有我高?(结果保留小数后一位)2、如图,一艘海轮位于灯塔P的北偏东650方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到过位于灯塔P的南偏东340方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果保留小数点后一位)ABDCAPBC【探究2】学生小王帮在测绘局工作的爸爸买了一些仪器后与同学在环西文化广场休息,看到濠河对岸的电视塔,他想用手中的测角仪和卷尺不过河测出电视塔空中塔楼的高度.现已测出∠ADB=40°,由于不能过河,因此无法知道BD的长度,于是他向前走50米到达C处测得∠ACB=55°,但他们在计算中碰到了困难,请大家一起想想办法,求出电视塔塔楼AB的高.数学在身边217tan40,tan55255(参考数据:)答案:空中塔楼AB高约为105米濠河ABCD50m55°40°21.414,31.732初探中考题【探究3】在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米)参考数据:答案:米15.1简单实际问题数学模型直角三角形三角形梯形组合图形构建解通过作高转化为直角三角形解思想与方法数学建模及方程思想解方程1.把实际问题转化成数学问题,这个转化包括两个方面:一是将实际问题的图形转化为几何图形,画出正确的示意图;二是将已知条件转化为示意图中的边、角或它们之间的关系.2.把数学问题转化成解直角三角形问题,如果示意图不是直角三角形,可添加适当的辅助线,画出直角三角形.思想与方法当堂反馈2.如图2,在离铁塔BE120m的A处,用测角仪测量塔顶的仰角为30°,已知测角仪高AD=1.5m,则塔高BE=_________(根号保留).图1图2(4031.5)m1.如图1,已知楼房AB高为50m,铁塔塔基距楼房地基间的水平距离BD为100m,塔高CD为m,则下面结论中正确的是()A.由楼顶望塔顶仰角为60°B.由楼顶望塔基俯角为60°C.由楼顶望塔顶仰角为30°D.由楼顶望塔基俯角为30°1003(50)3C当堂反馈3.如图3,从地面上的C,D两点测得树顶A仰角分别是45°和30°,已知CD=200m,点C在BD上,则树高AB等于(根号保留).4.如图4,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为(根号保留).100(31)m图3图4222cmABCDD′思考1:一架直升机从某塔顶A测得地面C、D两点的俯角分别为30°、45°,若C、D与塔底B共线,CD=200米,求塔高AB?意犹未尽思考2:有一块三形场地ABC,测得其中AB边长为60米,AC边长50米,∠ABC=30°,试求出这个三角形场地的面积.更上一层楼必做题:课本习题.21.414,31.732,62.449课后思考:如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由(参考数据:)初涉中考题ADCB30º45º
本文标题:28.2.2解直角三角形应用举例(2).
链接地址:https://www.777doc.com/doc-4079689 .html