您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 七年级数学下册9.3多项式乘多项式同步练习1(新版)苏科版
1畅游学海敢搏风浪誓教金榜题名。决战高考,改变命运。凌风破浪击长空,擎天揽日跃龙门9.3多项式乘多项式一.选择题1.计算(2x2﹣4)(2x﹣1﹣x)的结果,与下列哪一个式子相同?()A.﹣x2+2B.x3+4C.x3﹣4x+4D.x3﹣2x2﹣2x+42.如果(x+a)(x+b)的结果中不含x的一次项,那么a、b满足()A.a=bB.a=0C.a=﹣bD.b=03.下列计算正确的是()A.(ab3)2=a2b6B.a2•a3=a6C.(a+b)(a﹣2b)=a2﹣2b2D.5a﹣2a=34.当x取任意实数时,等式(x+2)(x﹣1)=x2+mx+n恒成立,则m+n的值为()A.1B.﹣2C.﹣15.下列运算正确的是()A.a•a2=a2B.a+2a=3aC.(2a)2=2a2D.(x+2)(x﹣3)=x2﹣66.若(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(ax+b)(8x﹣c),其中a,b,c是整数,则a+b+c的值等于()A.9B.﹣7C.13D.177.若(x﹣2)(x+1)=x2+ax+b,则a+b=()A.﹣1B.2C.3D.﹣38.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.19.若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6B.m=1,n=﹣6C.m=1,n=6D.m=5,n=﹣610.若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8B.﹣8C.0D.8或﹣811.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6B.p=1,q=﹣6C.p=1,q=6D.p=5,q=﹣612.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有()①(2a+b)(m+n);2②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A.①②B.③④C.①②③D.①②③④13.若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,则a和b的值()A.a=0;b=2B.a=2;b=0C.a=﹣1;b=2D.a=2;b=4二.填空题14.已知a+b=ab,则(a﹣1)(b﹣1)=.15.已知(x﹣1)(x+2)=ax2+bx+c,则代数式4a﹣2b+c的值为.16.已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为.17.计算(a+b)(a2﹣ab+b2)=.18.若(x+m)(x+3)中不含x的一次项,则m的值为.19.若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,则a=.b=.20.(x+2)(2x﹣3)=2x2+mx﹣6,则m=.21.在(x+1)(2x2﹣ax+1)的运算结果中,x2项的系数是﹣8,那么a的值是.22.现有若干张边长为a的正方形A型纸片,边长为b的正方形B型纸片,长宽为a、b的长方形C型纸片,小明同学选取了2张A型纸片,3张B型纸片,7张C型纸片拼成了一个长方形,则此长方形的周长为.(用a、b代数式表示)23.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=13,则x=.24.观察下列各式并找规律,再猜想填空:(a+b)(a2﹣ab+b2)=a3+b3,(x+2y)(x2﹣2xy+4y2)=x3+8y3则(2a+3b)(4a2﹣6ab+9b2)=.25.若(mx﹣6y)与(x+3y)的积中不含xy项,则m的值为.26.如果(x2+px+q)(x2﹣5x+7)的展开式中不含有x3,x2项,则p=,q=.3三.解答题27.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.28.计算:(x+3)(x﹣5)﹣x(x﹣2).29.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=.②你能否由此归纳出一般性规律:(x﹣1)(xn+xn﹣1+…+x+1)=.③根据②求出:1+2+22+…+234+235的结果.30.探究应用:(1)计算:(x+1)(x2﹣x+1)=;(2x+y)(4x2﹣2xy+y2)=.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含a、b的字母表示该公式为:.(3)下列各式能用第(2)题的公式计算的是.A.(m+2)(m2+2m+4)B.(m+2n)(m2﹣2mn+2n2)C.(3+n)(9﹣3n+n2)D.(m+n)(m2﹣2mn+n2)4参考答案与试题解析一.选择题1.(2016•台湾)计算(2x2﹣4)(2x﹣1﹣x)的结果,与下列哪一个式子相同?()A.﹣x2+2B.x3+4C.x3﹣4x+4D.x3﹣2x2﹣2x+4【分析】根据多项式乘多项式的法则进行计算即可.【解答】解:(2x2﹣4)(2x﹣1﹣x),=(2x2﹣4)(x﹣1),=x3﹣2x2﹣2x+4.故选:D.【点评】本题主要考查了多项式乘多项式的运算,多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.2.(2016•海淀区校级模拟)如果(x+a)(x+b)的结果中不含x的一次项,那么a、b满足()A.a=bB.a=0C.a=﹣bD.b=0【分析】把式子展开,找到所有x项的所有系数,令其为0,可求出m的值.【解答】解:∵(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab.又∵结果中不含x的一次项,∴a+b=0,即a=﹣b.故选C.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.3.(2016•泗阳县一模)下列计算正确的是()A.(ab3)2=a2b6B.a2•a3=a6C.(a+b)(a﹣2b)=a2﹣2b2D.5a﹣2a=3【分析】根据多项式乘多项式、合并同类项、同底数幂的乘法和幂的乘方与积的乘方分别进行解答,即可得出答案.【解答】解:A、(ab3)2=a2b6,故本选项正确;5B、a2•a3=a5,故本选项错误;C、(a+b)(a﹣2b)=a2﹣ab﹣2b2,故本选项错误;D、5a﹣2a=3a,故本选项错误.故选A.【点评】本题考查了多项式乘多项式、合并同类项、同底数幂的乘法和幂的乘方与积的乘方,熟记法则和公式是本题的关键.4.(2016•陕西校级二模)当x取任意实数时,等式(x+2)(x﹣1)=x2+mx+n恒成立,则m+n的值为()A.1B.﹣2C.﹣1【分析】根据多项式乘多项式的运算方法,将(x+2)(x﹣1)展开,再根据(x+2)(x﹣1)=x2+mx+n恒成立,求出m+n的值为多少即可.【解答】解:(x+2)(x﹣1)=x2+x﹣2,∵(x+2)(x﹣1)=x2+mx+n恒成立,∴m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选:C.【点评】此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.5.(2016•安徽三模)下列运算正确的是()A.a•a2=a2B.a+2a=3aC.(2a)2=2a2D.(x+2)(x﹣3)=x2﹣6【分析】原式利用多项式乘以多项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=a3,错误;B、原式=3a,正确;C、原式=4a2,错误;D、原式=x2﹣x﹣6,错误,故选B【点评】此题考查了多项式乘多项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.66.(2016•株洲模拟)若(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(ax+b)(8x﹣c),其中a,b,c是整数,则a+b+c的值等于()A.9B.﹣7C.13D.17【分析】首先将原式利用提取公因式法分解因式,进而得出a,b,c的值,进而得出答案.【解答】解:(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(7x﹣3)[(17x﹣11)﹣(9x﹣2)]=(7x﹣3)(8x﹣9)∵(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(ax+b)(8x﹣c),可因式分解成(7x﹣3)(8x﹣9),∴a=7,b=﹣3,c=9,∴a+b+c=7﹣3+9=13.故选C【点评】此题主要考查了提取公因式法分解因式以及代数式求值,根据已知正确分解因式是解题关键.7.(2016•湖州校级三模)若(x﹣2)(x+1)=x2+ax+b,则a+b=()A.﹣1B.2C.3D.﹣3【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出a与b的值,即可求出a+b的值.【解答】解:已知等式整理得:(x﹣2)(x+1)=x2﹣x﹣2=x2+ax+b,∴a=﹣1,b=﹣2,则a+b=﹣3,故选D【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.(2016秋•南漳县期末)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.1【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.7【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.9.(2016秋•南安市期末)若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6B.m=1,n=﹣6C.m=1,n=6D.m=5,n=﹣6【分析】先根据多项式乘以多项式的法则计算(y+3)(y﹣2),再根据多项式相等的条件即可求出m、n的值.【解答】解:∵(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴y2+my+n=y2+y﹣6,∴m=1,n=﹣6.故选B.【点评】本题主要考查多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn.注意不要漏项,漏字母,有同类项的合并同类项.10.(2016秋•衡阳期末)若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8B.﹣8C.0D.8或﹣8【分析】先根据多项式乘以多项式法则展开式子,并合并,不含x的一次项就是含x项的系数等于0,求解即可.【解答】解:∵(x+m)(x﹣8)=x2﹣8x+mx﹣8m=x2+(m﹣8)x﹣8m,又结果中不含x的一次项,∴m﹣8=0,∴m=8.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据不含某一项就是说这一项的系数等于08得出是解题关键.11.(2016秋•双城市期末)如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6B.p=1,q=﹣6C.p=1,q=6D.p=5,q=﹣6【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出p与q的值即可.【解答】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+px+q,∴p=1,q=﹣6,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.12.(2016春•开江县期末)如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有()①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A.①②B.③④C.①②③D.①②③④【分析】根据图中长方形的面积可表示为总长×总宽,也可表示成各矩形的面积和,【解答】解:表示该长方形面积的多项式①(2a+b)(m+n)正确;②2a(m+n)+b(m+n)正确;③m(2a+b)+n(2a+b)正确;④2am+2an+bm+bn正确.故选:D.【点评】此题主要考查了多项式乘以多项式,关
本文标题:七年级数学下册9.3多项式乘多项式同步练习1(新版)苏科版
链接地址:https://www.777doc.com/doc-4082525 .html