您好,欢迎访问三七文档
7.1.2平面直角坐标系(3)练习1:已知两点A(1,-2),B(-4,-2),C(1,3)则AB两点间的距离是______;AC两点间的距离是______.55X轴或平行于x轴的直线上AB两点间距离:BAxxABy轴或平行于y轴的直线上AB两点间距离:BAyyAB结论:结论:︱b︱︱a︱0xyabP(a,b).P(a,b)到x轴的距离是_____到y轴的距离是_____练习2:(1)已知点P(-1,2),则点P到x轴的距离为____,到y轴的距离为____.21(2)已知点Q(1,y)到x轴的距离为2,则点Q坐标是________Q(1,2)或Q(1,-2)(3)P点到x轴、y轴的距离分别是2和4,则P点的坐标为_____________________;若点P在x轴上方,y轴左侧,则点P的坐标为_______;若点P在x轴下方,则点P的坐标为_____________.P(4,2),P(4,-2),P(-4,2),P(-4,-2)P(-4,2)P(-4,-2),P(4,-2)-5-4-3-2-154321-5-4-3-2-154321yOxABC例1、求下列三角形面积如图,(1)点A(1,4)B(0,0)C(4,0)D-5-4-3-2-154321-5-4-3-2-154321yOxABC例1、求下列三角形面积D(2)点A(0,5)B(0,3)C(3,1)-5-4-3-2-154321-5-4-3-2-154321yOxABC练习、如图,A(1,1)B(5,1)C(2,4)求下列三角形面积D01234-2-1-3y1234-2-1-3xABC例2、(1)如图,在平面直角坐标系中,A(0,4),B(-3,-1),C(3,3),D(0,1),求三角形ABC的面积。D01234-2-1-3y1234-2-1-3xABC例2、(1)如图,在平面直角坐标系中,A(0,4),B(-3,-1),C(3,3),D(0,1),求三角形ABC的面积。DEFG01234-2-1-3y1234-2-1-3xABC例2、如图,在平面直角坐标系中,A(0,4),B(-3,-1),C(3,3),D(0,1),求三角形ABC的面积。DEF练习:如图,在平面直角坐标系中,A(-2,5)B(-8,2),O为坐标原点求三角形AOB的面积。-1-8-7-6-5-4-3-2-1BAO2543211xyCEFD例3、在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(5,0),B(3,4),C(0,3)计算这个四边形的面积。12345xyCBA-1O54321CB(3,4)A543215-5-4-3-2-14321-5-4-3-2-1yOxCB(3,4)A543215-5-4-3-2-14321-5-4-3-2-1yOxCB(3,4)A543215-5-4-3-2-14321-5-4-3-2-1yOxCB(3,4)A543215-5-4-3-2-14321-5-4-3-2-1yOx如图(1),△AOB的面积是多少?问题1yOx图(1)AB43211234(4,0)(0,3)15如图(2),△AOB的面积是多少?问题2yOx图(2)AB43211234(3,3)(4,0)16坐标距离三角形面积线段长度点17如图(3),△AOB的面积是多少?问题3yOx图(3)AB43211234(3,3)(0,4)18如图(4),△AOB的面积是多少?问题4yOx图(4)AB43211234(1,3)(-1,2)-1C(2,3)小结:平面直角坐标系中面积的求解,利用x轴(或平行于x轴)或y轴(或平行于y轴)的线段为底,横坐标或纵坐标的绝对值为高192.(1)已知△ABC中A(-1,)B(6,0)C(1,),,,求△ABC的面积.)0,52(D)271(,A)06(,B)231(,Cyx31425-2-1-3O12345-2-16786BCAD20x31425-2-1-3O12345-2-16786BCADy21(2)若△ABC中,,,)27(a,A)23(c,C)06(,B呢?)0,52(Dyx31425-2-1-3O12345-2-16786BCAD22xyABC练习.1.已知A(1,4),B(-4,0),C(2,0).△ABC的面积是___.2.若BC的坐标不变,△ABC的面积为6,点A的横坐标为-1,那么点A的坐标为___.12O(1,4)(-4,0)(2,0)CxyAB(-4,0)(2,0)(-1,2)或(-1,-2)23)4,4(4BOy43211234A(2,1)x图(8)23121112144ADBOADOABSSSEF方法1已知△ABC中,0(0,0),A(2,1),B(4,4),求△ABC的面积.24)4,4(4B444AEBAEOFOFBOABSSSS梯形Oy43211234A(2,1)xE(4,1)F(4,0)232211)42(214421图(9)方法225)4,4(4BAOFBGOBGOFBOABSSS4444S四边形正方形Oy43211234A(2,1)xE(4,1)F(4,0)26442144图(10)G(0,4)方法326)4,4(4BOy43211234A(2,1)xF(4,0)图(11)方法427)4,4(4BOy43211234A(2,1)x图(7)44ACBOACOABSSS221212121MN方法528如图,在平面直角坐标系中,梯形ABCD的坐标为A(0,0),B(0,8),C(8,8),D(12,0),点P,Q分别从B,D出发以1个单位/秒和2个单位/秒的速度向C,O运动,设运动时间为t(s)(-点到达,另一点也停止运动).(1)当t为何值时,四边形BAQP的面积为40?(2)当t为何值时,四边形BAQP为长方形?29一般的,在平面直角坐标系中,求已知顶点坐标的多边形面积都可以通过____的方法解决;在平面直角坐标系中,对于某些图形的面积不易直接求出,我们也可以通过_______,使之变为与它等面积的图形。割补等积变换301.已知△ABC中,A(-1,-2),B(6,2),C(1,3),求△ABC的面积.y-36x31425-2-1O12345-2-1678A(-1,-2)B(6,2)C(1,3)31-1-2xy1234567854321-2-1OA(-1,-2)B(6,2)C(1,3)D(6,-2)E(6,3)F(-1,3)方法132-1-2xy1234567854321-2-1OA(-1,-2)B(6,2)C(1,3)D(6,-2)E(6,3)方法233-1-2xy1234567854321-2-1OA(-1,-2)B(6,2)C(1,3)E(6,3)F(-1,3)方法334-1-2xy1234567854321-2-1OB(6,2)C(1,3)方法4A(-1,-2)A`B`C`35yx31425-2-1-3O12345-2-16786C(6,8)B(4,0)A(1,-2)78已知四边形ABCD中,A(1,-2),B(4,0),C(6,8),D(1,4),求四边形ABCD的面积.36割补法求面积谈谈我们的收获化复杂为简单转化思想2、今天我们学习了什么数学思想?1、在平面直角坐标系下,计算图形的面积可以运用什么方法?平移371.等积变换2.割补法求面积谈谈我们的收获化复杂为简单化未知为已知方法转化38
本文标题:直角坐标系面积问题
链接地址:https://www.777doc.com/doc-4088324 .html