您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 2.2.1对数与对数的运算第二课时
对数与对数运算(2)——对数的运算性质复习回顾:1.对数的定义?3.对数的基本性质?2.常用对数和自然对数分别以什么为底?对数的基本性质log10,(01)aaa且log1(01)aaaa且log(aNaN对数恒等式)(1)负数和零没有对数,即(N0)(3)(4)(2)(5)(010)NaNaaNalog且课前练习:333log1log3log27lnlg1007lg142lglg7lg183e⑴给出四个等式:1)lg(lg10)0;2)lg(ln)0;3)e2若lgx=10,则x=10;4)若lnx=e,则x=e其中正确的是________⑵⑶⑷1),2)43?证明:①设,logpMa,logqNa由对数的定义可以得:,paMqaN∴MN=paqaqpaqpMNalog即证得logloglogaaaMNMN对数的运算性质1、证明:logloglogaaaMNMN1)简易语言表达:“积的对数=对数的和”证明:②设,logpMa,logqNa由对数的定义可以得:,paMqaN∴qpaaqpaqpNMalog即证得NMlogloglogaaaMMNN2、证明:aaaMloglogMlogNN2)简易语言表达:“商的对数=对数的差”证明:设,logpMa由对数的定义可以得:,paM∴npnaMnpMnalog即证得naalogMnlogM(nR)loglognaaMnM3、证明:一个正数的n次方的对数=这个正数的对数n倍对数的运算性质说明:2)有时可逆向运用公式3)真数的取值必须是(0,+∞)4)注意log()aMNloglogaaMNlog()aMNloglogaaMN≠≠logloglogaaaMNMN⑴logloglogaaaMMNN⑵loglog()naaMnMnR⑶如果a0,a1,M0,N0有:1)简易语言表达:”积的对数=对数的和”……小结:例1讲解范例解(1)解(2)用,logxa,logyazalog表示下列各式:32log)2(;(1)logzyxzxyaazxyzxyaaalog)(loglog23logaxyzzyxaaalogloglog31212logloglogzyxaaazyxaaalog31log21log211232log()logaaxyz例2计算(1)(2))42(log7525lg100讲解范例解:)42(log752522log724log522log1422log=5+14=19解:21lg1052lg105255lg1001⑴若lglg2lg3lg,xabc则______x661log12log22⑵的值为______⑶22log843log843_____________巩固练习:23abc122探究:NmnNanamlogloglogloglogcacbba(,(0,1)(1,),0)acb1loglogabba),1()1,0(,ba(2)(1)(3)(1)loglogmnaanNNmloglog1loglogmxnmnamxnnanaaNxaNaNNmxnxNNmm证明:loglogloglog,log,log,,loglogloglogqcacccaPqkpcaccbbabpaqbkbcacbabpbcqa换底公式的证明证明:(2)loglog1loglogloglogloglogloglog1abcaccbcabbabbaaabba),1()1,0(,ba证明:(3)求值:24525(log5log0.2)(log2log0.5)827log9log321)2)课堂小结本节课主要学习了,对数的三个运算性质及换底公式。theend,thankyou!
本文标题:2.2.1对数与对数的运算第二课时
链接地址:https://www.777doc.com/doc-4095764 .html