您好,欢迎访问三七文档
1立体几何第一节空间几何体的结构、三视图和直观图、表面积和体积第一部分六年高考荟萃2010年高考题一、选择题1.(2010全国卷2理)(9)已知正四棱锥SABCD中,23SA,那么当该棱锥的体积最大时,它的高为(A)1(B)3(C)2(D)3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a,则高所以体积,设,则,当y取最值时,,解得a=0或a=4时,体积最大,此时,故选C.2.(2010陕西文)8.若某空间几何体的三视图如图所示,则该几何体的体积是[B](A)2(B)1(C)23(D)13【答案】B解析:本题考查立体图形三视图及体积公式如图,该立体图形为直三棱柱所以其体积为12212122123.(2010辽宁文)(11)已知,,,SABC是球O表面上的点,SAABC平面,ABBC,1SAAB,2BC,则球O的表面积等于(A)4(B)3(C)2(D)【答案】A【解析】选A.由已知,球O的直径为22RSC,表面积为244.R4.(2010安徽文)(9)一个几何体的三视图如图,该几何体的表面积是(A)372(B)360(C)292(D)280【答案】B【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。2(10810282)2(6882)360S.【方法技巧】把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和。5.(2010重庆文)(9)到两互相垂直的异面直线的距离相等的点(A)只有1个(B)恰有3个(C)恰有4个(D)有无穷多个【答案】D【解析】放在正方体中研究,显然,线段1OO、EF、FG、GH、HE的中点到两垂直异面直线AB、CD的距离都相等,所以排除A、B、C,选D,亦可在四条侧棱上找到四个点到两垂直异面直线AB、CD的距离相等6.(2010浙江文)(8)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是3(A)3523cm3(B)3203cm3(C)2243cm3(D)1603cm3【答案】B【解析】选B,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题7.(2010北京文)(8)如图,正方体1111ABCD-ABCD的棱长为2,动点E、F在棱11AB上。点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,1AE=y(x,y大于零),则三棱锥P-EFQ的体积:(A)与x,y都有关;(B)与x,y都无关;(C)与x有关,与y无关;(D)与y有关,与x无关;【答案】C8.(2010北京文)(5)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:答案:C9.(2010北京理)(8)如图,正方体ABCD-1111ABCD的棱长为2,动点E、F在棱11AB上,动点P,Q分别在棱AD,CD上,若EF=1,1AE=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积(A)与x,y,z都有关4(B)与x有关,与y,z无关(C)与y有关,与x,z无关(D)与z有关,与x,y无关【答案】D10.(2010北京理)(3)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为【答案】C11.(2010广东理)6.如图1,△ABC为三角形,AA//BB//CC,CC⊥平面ABC且3AA=32BB=CC=AB,则多面体△ABC-ABC的正视图(也称主视图)是【答案】D12.(2010广东文)513.(2010福建文)3.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于()A.3B.2C.23D.6【答案】D【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为324234,侧面积为3216,选D.【命题意图】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力。14.(2010全国卷1文)(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A)233(B)433(C)23(D)833【答案】B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有ABCD11222323Vhh四面体,当直径通过AB与CD的中点时,22max22123h,故6max433V二、填空题1.(2010上海文)6.已知四棱椎PABCD的底面是边长为6的正方形,侧棱PA底面ABCD,且8PA,则该四棱椎的体积是。【答案】96【解析】考查棱锥体积公式9683631V2.(2010湖南文)13.图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h=cm【答案】43.(2010浙江理)(12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是___________3cm.解析:图为一四棱台和长方体的组合体的三视图,由卷中所给公式计算得体积为144,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题74.(2010辽宁文)(16)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.解析:填23画出直观图:图中四棱锥PABCD即是,所以最长的一条棱的长为23.PB5.(2010辽宁理)(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.【答案】23【命题立意】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力。【解析】由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为222222236.(2010天津文)(12)一个几何体的三视图如图所示,则这个几何体的体积为。【答案】3【解析】本题主要考查三视图的基础知识,和主题体积的计算,属于容易题。由俯视图可知该几何体的底面为直角梯形,则正视图和俯视图可知该几何体的高为1,结合三个试图可知该几何体是底面为直角梯形的直四棱柱,所以该几何题的体积为1+=2(12)213【温馨提示】正视图和侧视图的高是几何体的高,由俯视图可以确定几何体底面的形状,本题也可以将几何体看作是底面是长为3,宽为2,高为1的长方体的一半。PDCBA87.(2010天津理)(12)一个几何体的三视图如图所示,则这个几何体的体积为【答案】103【解析】本题主要考查三视图的概念与柱体、椎体体积的计算,属于容易题。由三视图可知,该几何体为一个底面边长为1,高为2的正四棱柱与一个底面边长为2,高为1的正四棱锥组成的组合体,因为正巳灵珠的体积为2,正四棱锥的体积为144133,所以该几何体的体积V=2+43=103【温馨提示】利用俯视图可以看出几何体底面的形状,结合正视图与侧视图便可得到几何体的形状,求锥体体积时不要丢掉13哦。三、解答题1.(2010上海文)20.(本大题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出用于灯笼的三视图(作图时,不需考虑骨架等因素).解析:(1)设圆柱形灯笼的母线长为l,则l1.22r(0r0.6),S3(r0.4)20.48,所以当r0.4时,S取得最大值约为1.51平方米;(2)当r0.3时,l0.6,作三视图略.9ABCDEFH2.(2010陕西文)18.(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.(Ⅰ)证明:EF∥平面PAD;(Ⅱ)求三棱锥E—ABC的体积V.解(Ⅰ)在△PBC中,E,F分别是PB,PC的中点,∴EF∥BC.又BC∥AD,∴EF∥AD,又∵AD平面PAD,EF平面PAD,∴EF∥平面PAD.(Ⅱ)连接AE,AC,EC,过E作EG∥PA交AB于点G,则BG⊥平面ABCD,且EG=12PA.在△PAB中,AD=AB,PAB°,BP=2,∴AP=AB=2,EG=22.∴S△ABC=12AB·BC=12×2×2=2,∴VE-ABC=13S△ABC·EG=13×2×22=13.3.(2010安徽文)19.(本小题满分13分)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,(Ⅰ)求证:FH∥平面EDB;(Ⅱ)求证:AC⊥平面EDB;(Ⅲ)求四面体B—DEF的体积;【命题意图】本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查体积的计算等基础10知识,同时考查空间想象能力、推理论证能力和运算能力.【解题指导】(1)设底面对角线交点为G,则可以通过证明EG∥FH,得FH∥平面EDB;(2)利用线线、线面的平行与垂直关系,证明FH⊥平面ABCD,得FH⊥BC,FH⊥AC,进而得EG⊥AC,AC平面EDB;(3)证明BF⊥平面CDEF,得BF为四面体B-DEF的高,进而求体积.(1),1//,21//,2////ACBDGGACEGGHHBCGHABEFABEFGHEGFHEGEDBFHEDB证:设与交于点,则为的中点,连,由于为的中点,故又四边形为平行四边形,而平面,平面【规律总结】本题是典型的空间几何问题,图形不是规则的空间几何体,所求的结论是线面平行与垂直以及体积,考查平行关系的判断与性质.解决这类问题,通常利用线线平行证明线面平行,利用线线垂直证明线面垂直,通过求高和底面积求四面体体积.4.(2010四川理)(18)(本小题满分12分)已知正方体ABCD-A'B'C'D'的棱长为1,点M是棱AA'的中点,点O是对角线BD'的中点.(Ⅰ)求证:OM为异面直线AA'和BD'的公垂线;(Ⅱ)求二面角M-BC'-B'的大小;(Ⅲ)求三棱锥M-OBC的体积.本小题主要考查异面直线、直线与平面垂直、二面角、正方体、三棱锥体积等基础知识,并DABCDMOABC11考查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力。解法一:(1)连结AC,取AC中点K,则K为BD的中点,连结OK因为M是棱AA’的中点,点O是BD’的中点所以AM1//'//2DDOK所以MO//AK由AA’⊥AK,得MO⊥AA’因为AK⊥BD,AK⊥BB’,所以AK⊥平面BDD’B’所以AK⊥BD’所以MO⊥BD’又因为OM是异面直线AA’和BD’都相交故OM为异面直线AA'和BD'的公垂线(2)取BB’中点N,连结MN,则MN⊥平面BCC’B’过点N作NH⊥BC’于H,连结MH则由三垂线定理得BC’⊥MH从而,∠MHN为二面角M-BC’-B’的平面角MN=1,NH=Bnsin45°=122224在Rt△MNH中,tan∠MHN=12224MNNH故二面角M-BC’-B’的大小为arctan22(3)易知,S△OBC=S△OA’D’,且△OBC和△OA’D’都在平面BCD’A’内点O到平面MA’D’距离h=12VM-OBC=VM-OA’D’=VO-M
本文标题:最新6年高考4年模拟分类汇编14第八章 第一节 空间几何体的结构、三视图和直观图、表面积和体积
链接地址:https://www.777doc.com/doc-4095806 .html