您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 1.5.3《定积分的概念》课件 (1)
定积分的概念一、定积分的定义11()()nniiiibafxfn小矩形面积和S=如果当n∞时,S的无限接近某个常数,这个常数为函数f(x)在区间[a,b]上的定积分,记作baf(x)dx,即baf(x)dxni10limf(i)xi。从求曲边梯形面积S的过程中可以看出,通过“四步曲”:分割---近似代替----求和------取极限得到解决.1()lim()ninibafxdxfnba即定积分的定义:定积分的相关名称:———叫做积分号,f(x)——叫做被积函数,f(x)dx—叫做被积表达式,x———叫做积分变量,a———叫做积分下限,b———叫做积分上限,[a,b]—叫做积分区间。1()lim()ninibafxdxfnba即Oabxy)(xfySbaf(x)dx;按定积分的定义,有(1)由连续曲线yf(x)(f(x)0),直线xa、xb及x轴所围成的曲边梯形的面积为(2)设物体运动的速度vv(t),则此物体在时间区间[a,b]内运动的距离s为sbav(t)dt。Oab()vvttv定积分的定义:1()lim()ninibafxdxfnba即112001()3Sfxdxxdx根据定积分的定义右边图形的面积为1xyOf(x)=x213S1SD2SD2()2vtt=-+Ovt12gggggg3SDjSDnSD1n2n3njn1nn-4SD112005()(2)3Svtdttdt根据定积分的定义左边图形的面积为3.定积分的值与积分变量用什么字母表示无关,即有bababaduufdttfdxxf)()()(4.规定:abbadxxfdxxf)()(0)(aadxxf注:2.当xfini)(1的极限存在时,其极限值仅与被积函数及积分区间有关,而与区间ba,的分法及i点的取法无关。f(x)[a,b](2)定积分的几何意义:Oxyabyf(x)baf(x)dxcaf(x)dxbcf(x)dx。xa、xb与x轴所围成的曲边梯形的面积。当f(x)0时,积分dxxfba)(在几何上表示由y=f(x)、特别地,当ab时,有baf(x)dx0。当f(x)0时,由yf(x)、xa、xb与x轴所围成的曲边梯形位于x轴的下方,xyOdxxfSba)]([,dxxfba)(.abyf(x)baf(x)dxcaf(x)dxbcf(x)dx。S上述曲边梯形面积的负值。定积分的几何意义:积分baf(x)dx在几何上表示baf(x)dxcaf(x)dxbcf(x)dx。SS•2.定积分和曲边梯形面积的关系•设曲边梯形在x轴上方的面积为S上,x轴下方的面积为S下,则•(1)当曲边梯形的面积在x轴上方时,如图(1),•则•图(1)图(2)(2)当曲边梯形的面积在x轴下方时,如图(2),则abf(x)dx=.(3)当曲边梯形的面积在x轴上方、x轴下方均存在时,如图(3),则abf(x)dx=.若S上=S下,则abf(x)dx=.图(3)-S下S上-S下0abyf(x)Oxy()ygx探究:根据定积分的几何意义,如何用定积分表示图中阴影部分的面积?abyf(x)Oxy1()baSfxdx()ygx12()()bbaaSSSfxdxgxdx2()baSgxdx三:定积分的基本性质性质1.dx)]x(g)x(f[bababadx)x(gdx)x(f性质2.badx)x(kfbadx)x(fk三:定积分的基本性质定积分关于积分区间具有可加性bccabadx)x(fdx)x(fdx)x(f性质3.2121ccbccabadx)x(fdx)x(fdx)x(fdx)x(fOxyabyf(x)C性质3不论a,b,c的相对位置如何都有aby=f(x)baf(x)dxcaf(x)dxbcf(x)dx。baf(x)dxcaf(x)dxbcf(x)dx。baf(x)dxcaf(x)dxbcf(x)dx。cOxybaf(x)dxcaf(x)dxbcf(x)dx。例1:利用定积分的定义,计算的值.130xdx例2.用定积分表示图中四个阴影部分面积积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图①中,被积函数(,0)(]0[)(12xfaxxf解:dxxAa200000ayxyxyxyxf(x)=x2f(x)=x2-12f(x)=1ab-12f(x)=(x-1)2-1①②③④积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图②中,被积函数(,0)(]21[)(22xfxxf解:dxxA2210000ayxyxyxyx-12ab-12①②③④f(x)=x2f(x)=x2f(x)=1f(x)=(x-1)2-1积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图③中,被积函数(,0)(][1)(3xfbaxf解:dxAba0000ayxyxyxyx-12ab-12①②③④f(x)=x2f(x)=x2f(x)=1f(x)=(x-1)2-1可得阴影部分的面积为根据定积分的几何意义,上,在上,上连续,且在,在)在图④中,被积函数(0)(]20[,0)(]01[]21[1)1()(42xfxfxxf解:dxxdxxA]1)1[(]1)1[(2202010000ayxyxyxyx-12ab-12①②③④f(x)=x2f(x)=x2f(x)=1f(x)=(x-1)2-1成立。说明等式利用定积分的几何意义0sin22xdx例3:解:所以并有上,在上,上连续,且在,在在右图中,被积函数,,0sin]20[,0sin]02[]22[sin)(21AAxxxxf0)(1222AAdxxf222A1Axyf(x)=sinx1-1利用定积分的几何意义,判断下列定积分值的正、负号。20sinxdx212dxx利用定积分的几何意义,说明下列各式。成立:0sin20xdx200sin2sinxdxxdx1).2).1).2).练习:试用定积分表示下列各图中影阴部分的面积。0yxy=x2120xy=f(x)y=g(x)aby例4dxx1021计算积分义知,该积分值等于解:由定积分的几何意的面积(见下图)所围及轴,曲线10,12xxxxyx1y面积值为圆的面积的4141102dxx所以
本文标题:1.5.3《定积分的概念》课件 (1)
链接地址:https://www.777doc.com/doc-4097586 .html