您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 25.2. 用列举法求概率(1、2、3)(优质课件)
温故知新一般地,对于一个随机事件A,我们把刻画其,称为随机事件A发生的概率,记为1.概率的定义:发生可能性大小的数值P(A).2、等可能试验有两个共同点:1.每一次试验中,可能出现的结果是;2.每一次试验中,出现的结果.有限个可能性相等温故知新3、一般地,如果一次试验中,有,并且它们发生的可能性都相等.事件A包含其中的.那么事件A发生的概率.n种可能的结果m种结果nmP(A)=0≤P(A)≤1概率的范围:人教版九年级上册探索新知例1如图:计算机扫雷游戏,在9×9个小方格中,随机埋藏着10个地雷,每个小方格只有1个地雷,小王开始随机踩一个小方格,标号为3,在3的周围的正方形中有3个地雷,我们把他的区域记为A区,A区外记为B区,,下一步小王应该踩在A区还是B区?探索新知由于3/8大于7/72,所以第二步应踩B区解:A区有8格3个雷,遇雷的概率为3/8,B区有9×9-9=72个小方格,还有10-3=7个地雷,遇到地雷的概率为7/72.变式练习1如果小王在游戏开始时踩中的第一格上出现了标号1,则下一步踩在哪一区域比较安全?探索新知例2、掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上(2)两枚硬币全部反面朝上(3)一枚硬币正面朝上,一枚硬币反面朝上解:我们把掷两枚硬币所能产生的结果全部列举出来,它们是:正正、正反、反正、反反。所有的结果共有4个,并且这四个结果出现的可能性相等。探索新知(1)所有的结果中,满足两枚硬币全部正面朝上(记为事件A)的结果只有一个,即“正正”所以P(A)=(2)所有的结果中,满足两枚硬币全部反面朝上(记为事件B)的结果只有一个,即“反反”所以P(B)=(3)所有的结果中,满足一枚硬币正面朝上,一枚硬币反面朝上(记为事件C)的结果共有2个,即“正反”“反正”所以P(C)=41414221=同步练习1.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是().A.B.C.D.1.2.从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞机、火车、汽车、轮船,某人乘坐以上交通工具,从甲地经乙地到丙地的方法有()种.A.4B.7C.12D.81.412143同步练习3.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于().A.B.C.D.1.4.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的一半的概率是().A.B.C.D.131121461312132实际运用5.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。参加这个游戏的观众有三次翻牌的机会。某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是().A.B.C.D.416151203实际运用6.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“08和“北京”的字块,如果婴儿能够排成2008北京”或者“北京2008.则他们就给婴儿奖励,假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是___________.实际运用7、一张圆桌旁有4个座位,A先坐在如图所示的位置上,B、C、D随机地坐到其它三个座位上,求A与B不相邻而坐的概率。圆桌A解:按逆时针共有下列六种不同的坐法:ABCD、ABDC、ACBD、ACDB、ADBC、ADCB而A与B不相邻的有2种,所以A与B不相邻而坐的概率为_____13实际运用8.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲,乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.所有可能得到的不同的积分别为______;数字之积为奇数的概率为______.甲4213乙531246课堂小结1、列举法求概率。人教版九年级上册例3:同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子的点数和是9;(3)至少有一个骰子的点数为2.问:影响可能结果的因素有几个?每个因素可能出现的结果有几个?还能如何列举可能出现的所有结果?探索新知分析:当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用。把两个骰子分别标记为第1个和第2个,列表如下:6,66,56,46,36,26,15,65,55,45,35,25,14,64,54,44,34,24,13,63,53,43,33,23,12,62,52,42,32,22,11,61,51,41,31,21,1654321654321第2个第1个列表法探索新知解:由表可看出,同时投掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。(1)满足两个骰子点数相同(记为事件A)的结果有6个61366)(AP(2)满足两个骰子点数和为9(记为事件B)的结果有4个91364)(BP(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个。3611)(CP探索新知如果把例5中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得的结果有变化吗?没有变化1、一个袋子中装有2个红球和2个绿球,任意摸出一球,记录颜色放回,再任意摸出一球,记录颜色放回,请你估计两次都摸到红球的概率是________。2、某人有红、白、蓝三件衬衫和红、白、蓝三条长裤,该人任意拿一件衬衫和一条长裤,求正好是一套白色的概率_________。3、在6张卡片上分别写有1—6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?4191同步练习6,66,56,46,36,26,15,65,55,45,35,25,14,64,54,44,34,24,13,63,53,43,33,23,12,62,52,42,32,22,11,61,51,41,31,21,1654321654321第2个第1个1873614)(AP解:将两次抽取卡片记为第1个和第2个,用表格列出所有可能出现的情况,如图所示,共有36种情况。则将第1个数字能整除第2个数字事件记为事件A,满足情况的有(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,4),(5,1),(5,5),(6,1)(6,2),(6,3),(6,6)。同步练习“配紫色”游戏小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?红白黄蓝绿A盘B盘表格可以是:“配紫色”游戏游戏者获胜的概率是1/6.第二个转盘第一个转盘黄蓝绿红(红,黄)(红,蓝)(红,绿)白(白,黄)(白,蓝)(白,绿)红白黄蓝绿A盘B盘这个游戏对小亮和小明公平吗?小明和小亮做扑克游戏,桌面上放有两堆牌,分别是红桃和黑桃的1,2,3,4,5,6,小明建议:我从红桃中抽取一张牌,你从黑桃中取一张,当两张牌数字之积为奇数时,你得1分,为偶数我得1分,先得到10分的获胜”。如果你是小亮,你愿意接受这个游戏的规则吗?为什么?123456123456红桃黑桃解:我不愿意接受这个游戏的规则,理由如下:列表:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表中可以看出,在两堆牌中分别取一张,它可能出现的结果有36个,它们出现的可能性相等。满足两张牌的数字之积为奇数(记为事件A)的有9种情况,所以P(A)=满足两张牌的数字之积为偶数(记为事件B)的有27种情况,所以P(A)=因为P(A)P(B),所以如果我是小亮,我不愿意接受这个游戏的规则。433627413691、怎样改变规则使游戏变得公平?2、如果去掉黑桃只留下红桃,小亮抽一张牌,不放回小明在抽一张,其他规则不变,游戏是否公平?变式练习列表法有限等可能事件满足怎样的条件时可用列举法:在一次试验中涉及到得因素有两个。课堂小结人教版九年级上册例1.将一个均匀的硬币上抛三次,结果为三个正面的概率_____________.解:开始反正正反反正正反反反正反正正第一次:第二次:第三次:总共有8种结果,每种结果出现的可能性相同,而三次正面朝上的结果有1种,因此三次正面朝上的概率为1/8。1/8探索新知例4、甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I,从3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?分析:当一次试验要涉及3个或更多的因素(例如从3个口袋中取球)时,列表就不方便了,为不重不漏地列出所有可能的结果,通常采用树形图探索新知ABCDECDEHIHIHIHIHIHI乙丙甲解:根据题意,我们可以画出如下的”树形图“:从树形图可以看出,所有可能出现的结果共有12个.探索新知这些结果出现的可能性相等.(1)只有一个元音字母的结果(红色)有5个,即ACH,ADH,BCI,BDI,BEH,所以P(一个元音)=125有两个元音字母的结果(绿色)有4个,即ACI,ADI,AEH,BEI,所以P(两个元音)=31124满足三个全部为元音字母的结果有1个,则P(三个元音)=121探索新知(2)全是辅音字母的结果共有2个:BCH,BDH,所以P(三个辅音)=61122用树形图列出的结果看起来一目了然,当事件要经过多次步骤(三步以上)完成时,用这种树形图的方法求时间的概率很有效.探索新知想一想,什么时候使用”列表法“方便,什么时候使用”树形图法“方便?当事件要经过多个步骤完成时:三步以上,用这种”树形图”的方法求事件的概率很有效.当事件涉及两个元素,并且出现的结果数目为了不重不漏列出所有可能的结果,用列表法.小结归纳经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率:(1)三辆车全部继续直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左传.同步练习第一辆车第二辆车第三辆车左直右左直右左左直直右右左直右左左直直右右左直右左左直直右右左直右左直右左直右左左左左左直左左右左直左左直直左直右左右左左右直左右右直左左直左直直左右直直左直直直直直右直右左直右直直右右右左左右左直右左右右直左右直直右直右右右左右右直右右右解
本文标题:25.2. 用列举法求概率(1、2、3)(优质课件)
链接地址:https://www.777doc.com/doc-4113210 .html