您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 25.2用列举法求概率
人教版九年级上册复习回顾:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含在其中的m种结果,那么事件A发生的概率为:nmAP)(求概率的步骤:(1)列举出一次试验中的所有结果(n个);(2)找出其中事件A发生的结果(m个);(3)运用公式求事件A的概率:nmAP)(1、列举法就是把要数的对象一一列举出来分析求解的方法.列举法探索新知例1、掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上(2)两枚硬币全部反面朝上(3)一枚硬币正面朝上,一枚硬币反面朝上解:我们把掷两枚硬币所能产生的结果全部列举出来,它们是:正正、正反、反正、反反。所有的结果共有4个,并且这四个结果出现的可能性相等。探索新知(1)所有的结果中,满足两枚硬币全部正面朝上(记为事件A)的结果只有一个,即“正正”所以P(A)=(2)所有的结果中,满足两枚硬币全部反面朝上(记为事件B)的结果只有一个,即“反反”所以P(B)=(3)所有的结果中,满足一枚硬币正面朝上,一枚硬币反面朝上(记为事件C)的结果共有2个,即“正反”“反正”所以P(C)=41414221=练习:有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写着“20”,“08”和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励。假设该婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是多少?解:排“20”,“08”,“北京”三个字块所有可能性为:①2008北京②20北京08③0820北京④08北京20⑤北京2008⑥北京0820其中排成“2008北京”或“北京2008”有两种情况,所以婴儿能得到奖励的概率为13人教版九年级上册例1:同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子的点数和是9;(3)至少有一个骰子的点数为2.问:影响可能结果的因素有几个?每个因素可能出现的结果有几个?还能如何列举可能出现的所有结果?探索新知分析:当一次试验要涉及两个因素(例如掷两个骰子或抛两枚硬币)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用列表法。把两个骰子分别标记为第1个和第2个,列表如下:123456123456解:用表格列举出所有可能出现的结果(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(1)满足两个骰子点数相同(记为事件A)36661P(A)==第一个第二个123456123456(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(6,3)(5,4)(4,5)(3,6)(2)满足两个骰子点数和为9(记为事件B)36491P(B)==用表格列举出所有可能出现的结果第一个第二个123456123456(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(3)满足至少有一个骰子的点数为2(记为事件C)用表格列举出所有可能出现的结果3611)(CP第一个第二个如果把刚刚这个例题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得的结果有变化吗?没有变化用列举法求概率1.列举法2.列表法当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法。一个因素所包含的可能情况另一个因素所包含的可能情况两个因素所组合的所有可能情况,即n在所有可能情况n中,再找到满足条件的事件的个数m,最后代入公式计算.列表法中表格构造特点:这个游戏对小亮和小明公平吗?练习:小明和小亮做扑克游戏,桌面上放有两堆牌,分别是红桃和黑桃的1,2,3,4,5,6,小明建议:我从红桃中抽取一张牌,你从黑桃中取一张,当两张牌数字之积为奇数时,你得1分,为偶数我得1分,先得到10分的获胜”。如果你是小亮,你愿意接受这个游戏的规则吗?为什么?123456123456红桃黑桃解:我不愿意接受这个游戏的规则,理由如下:列表:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表中可以看出,在两堆牌中分别取一张,它可能出现的结果有36个,它们出现的可能性相等。满足两张牌的数字之积为奇数(记为事件A)的有9种情况,所以P(A)=满足两张牌的数字之积为偶数(记为事件B)的有27种情况,所以P(A)=因为P(A)P(B),所以如果我是小亮,我不愿意接受这个游戏的规则。43362741369人教版九年级上册掷两枚硬币,不妨设其中一枚为A,另一枚为B,求出现“正正”的概率是多少?方法一:用直接列举法列举所有可能出现的结果:(正,正),(正,反),(反,正),(反,反)方法二:不妨设其中一枚为A,另一枚为B,用列表法列举所有可能出现的结果:BA还能用其它方法列举所有结果吗?正反正反正正正反反正反反还能用其它方法列举所有结果吗?第二枚共4种可能的结果此图类似于树的形状,所以称为“树形图”。正反反第一枚反正正探究31甲转盘乙转盘4共12种可能的结果与“列表”法对比,结果怎么样?甲转盘指针所指的数字可能是1、2、3,乙转盘指针所指的数字可能是4、5、6、7。甲123乙4567256745674567求指针所指数字之和为偶数的概率。√√√√√√例3.甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。从3个口袋中各随机地取出1个小球。本题中元音字母:AEI辅音字母:BCDH(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用树形图甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。从3个口袋中各随机地取出1个小球。(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?甲乙丙ACDEHIHIHIBCDEHIHIHIBCHACHACIADHADIAEHAEIBCIBDHBDIBEHBEI解:由树形图得,所有可能出现的结果有12个,它们出现的可能性相等。(1)满足只有一个元音字母的结果有5个,则P(一个元音)=满足只有两个元音字母的结果有4个,则P(两个元音)==满足三个全部为元音字母的结果有1个,则P(三个元音)=(2)满足全是辅音字母的结果有2个,则P(三个辅音)==1251243112261121练习:经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率:(1)三辆车全部继续直行(2)两辆车右转,一辆车左转(3)至少有两辆车左转左左直右左直右左直右左直右直左直右左直右左直右左直右右左直右左直右左直右左直右解:由树形图得,所有可能出现的结果有27个,它们出现的可能性相等。(1)三辆车全部继续直行的结果有1个,则P(三辆车全部继续直行)=(2)两辆车右转,一辆车左转的结果有3个,则P(两辆车右转,一辆车左转)==(3)至少有两辆车左转的结果有7个,则P(至少有两辆车左转)=左直右左左左左左左左直右直左左直左直左直右右左左右左右直直右左左直左直左直直右直左直直直直直直右右左直右直右右直右左左右左右左右直右直左右直右直右直右右左右右右右27127327791第一辆车第二辆车第三辆车
本文标题:25.2用列举法求概率
链接地址:https://www.777doc.com/doc-4113226 .html