您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 中考初中数学知识点总结
1初中数学复习提纲知识点1:一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。2.直角坐标系中,x轴上的任意点的横坐标为0.3.直角坐标系中,点A(1,1)在第一象限.4.直角坐标系中,点A(-2,3)在第四象限.5.直角坐标系中,点A(-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32x的值为1.2.当x=3时,函数y=21x的值为1.3.当x=-1时,函数y=321x的值为1.知识点4:基本函数的概念及性质1.函数y=-8x是一次函数.2.函数y=4x+1是正比例函数.3.函数xy21是反比例函数.4.抛物线y=-3(x-2)2-5的开口向下.5.抛物线y=4(x-3)2-10的对称轴是x=3.6.抛物线2)1(212xy的顶点坐标是(1,2).7.反比例函数xy2的图象在第一、三象限.知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值21.cos30°=23.2.sin260°+cos260°=1.3.2sin30°+tan45°=2.4.tan45°=1.5.cos60°+sin30°=1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。知识点8:直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.知识点10:正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.知识点11:一元二次方程的解1.方程042x的根为.A.x=2B.x=-2C.x1=2,x2=-2D.x=432.方程x2-1=0的两根为.A.x=1B.x=-1C.x1=1,x2=-1D.x=23.方程(x-3)(x+4)=0的两根为.A.x1=-3,x2=4B.x1=-3,x2=-4C.x1=3,x2=4D.x1=3,x2=-44.方程x(x-2)=0的两根为.A.x1=0,x2=2B.x1=1,x2=2C.x1=0,x2=-2D.x1=1,x2=-25.方程x2-9=0的两根为.A.x=3B.x=-3C.x1=3,x2=-3D.x1=+3,x2=-3知识点12:方程解的情况及换元法1.一元二次方程02342xx的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.不解方程,判别方程3x2-5x+3=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.不解方程,判别方程3x2+4x+2=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.不解方程,判别方程4x2+4x-1=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.不解方程,判别方程5x2-7x+5=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根6.不解方程,判别方程5x2+7x=-5的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.不解方程,判别方程x2+4x+2=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.不解方程,判断方程5y2+1=25y的根的情况是A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根9.用换元法解方程4)3(5322xxxx时,令32xx=y,于是原方程变为.A.y2-5y+4=0B.y2-5y-4=0C.y2-4y-5=0D.y2+4y-5=010.用换元法解方程4)3(5322xxxx时,令23xx=y,于是原方程变为.A.5y2-4y+1=0B.5y2-4y-1=0C.-5y2-4y-1=0D.-5y2-4y-1=0411.用换元法解方程(1xx)2-5(1xx)+6=0时,设1xx=y,则原方程化为关于y的方程是.A.y2+5y+6=0B.y2-5y+6=0C.y2+5y-6=0D.y2-5y-6=0知识点13:自变量的取值范围1.函数2xy中,自变量x的取值范围是.A.x≠2B.x≤-2C.x≥-2D.x≠-22.函数y=31x的自变量的取值范围是.A.x3B.x≥3C.x≠3D.x为任意实数3.函数y=11x的自变量的取值范围是.A.x≥-1B.x-1C.x≠1D.x≠-14.函数y=11x的自变量的取值范围是.A.x≥1B.x≤1C.x≠1D.x为任意实数5.函数y=25x的自变量的取值范围是.A.x5B.x≥5C.x≠5D.x为任意实数知识点14:基本函数的概念1.下列函数中,正比例函数是.A.y=-8xB.y=-8x+1C.y=8x2+1D.y=x82.下列函数中,反比例函数是.A.y=8x2B.y=8x+1C.y=-8xD.y=-x83.下列函数:①y=8x2;②y=8x+1;③y=-8x;④y=-x8.其中,一次函数有个.A.1个B.2个C.3个D.4个知识点15:圆的基本性质1.如图,四边形ABCD内接于⊙O,已知∠C=80°,则∠A的度数是.A.50°B.80°C.90°D.100°2.已知:如图,⊙O中,圆周角∠BAD=50°,则圆周角∠BCD的度数是.A.100°B.130°C.80°D.50°3.已知:如图,⊙O中,圆心角∠BOD=100°,则圆周角∠BCD的度数是.A.100°B.130°C.80°D.50°4.已知:如图,四边形ABCD内接于⊙O,则下列结论中正确的是.A.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为5cm的圆中,有一条长为6cm的弦,则圆心到此弦的距离为.•DBCAO••BOCAD•BOCAD•BOCAD5A.3cmB.4cmC.5cmD.6cm6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD的度数是.A.100°B.130°C.80°D.507.已知:如图,⊙O中,弧AB的度数为100°,则圆周角∠ACB的度数是.A.100°B.130°C.200°D.508.已知:如图,⊙O中,圆周角∠BCD=130°,则圆心角∠BOD的度数是.A.100°B.130°C.80°D.50°9.在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O的半径为cm.A.3B.4C.5D.1010.已知:如图,⊙O中,弧AB的度数为100°,则圆周角∠ACB的度数是.A.100°B.130°C.200°D.50°12.在半径为5cm的圆中,有一条弦长为6cm,则圆心到此弦的距离为.A.3cmB.4cmC.5cmD.6cm知识点16:点、直线和圆的位置关系1.已知⊙O的半径为10㎝,如果一条直线和圆心O的距离为10㎝,那么这条直线和这个圆的位置关系为.A.相离B.相切C.相交D.相交或相离2.已知圆的半径为6.5cm,直线l和圆心的距离为7cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.相离或相交3.已知圆O的半径为6.5cm,PO=6cm,那么点P和这个圆的位置关系是A.点在圆上B.点在圆内C.点在圆外D.不能确定4.已知圆的半径为6.5cm,直线l和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是.A.0个B.1个C.2个D.不能确定5.一个圆的周长为acm,面积为acm2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.不能确定6.已知圆的半径为6.5cm,直线l和圆心的距离为6cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.不能确定7.已知圆的半径为6.5cm,直线l和圆心的距离为4cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.相离或相交8.已知⊙O的半径为7cm,PO=14cm,则PO的中点和这个圆的位置关系是.A.点在圆上B.点在圆内C.点在圆外D.不能确定知识点17:圆与圆的位置关系1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是.A.外离B.外切C.相交D.内切2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是.A.内切B.外切C.相交D.外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是.A.外切B.相交C.内切D.内含4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是.A.外离B.外切C.相交D.内切5.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长43,则两圆的位置关系是.•CBAO•BOCAD•CBAO6A.外切B.内切C.内含D.相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是.A.外切B.相交C.内切D.内含知识点18:公切线问题1.如果两圆外离,则公切线的条数为.A.1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A.1条B.2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A.1条B.2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为.A.1条B.2条C.3条D.4条5.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B.2条C.3条D.4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有条.A.1条B.2条C.3条D.4条知识点19:正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为.A.5cmB.10cmC.10cmD.5πcm2.正三角形外接圆的半径为2,那么它内切圆的半径为.A.2B.3C.1D.23.已知,正方形的边长为2,那么这个正方形内切圆的半径为.A.2B.1C.2D.34.扇形的面积为32,半径为2,那么这个扇形的圆心角为=.A.30°B.60°C.90°D.120°5.已知,正六边形的半径为R,那么这个正六边形的边长为.A.21RB.RC.2RD.R36.圆的周长为C,那么这个圆的面积S=.A.2CB.2CC.22CD.42C7.正三角形内切圆与外接圆的半径之比为.A.1:2B.1:
本文标题:中考初中数学知识点总结
链接地址:https://www.777doc.com/doc-4114065 .html