您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 2018年重庆市重点中学中考数学模拟试卷(4)
第1页(共32页)2018年重庆市重点中学中考数学模拟试卷(4)一.选择题:(每小题4分,共48分)1.(4分)4的倒数的相反数是()A.﹣4B.4C.D.2.(4分)如图图形既是中心对称又是轴对称图形的是()A.B.C.D.3.(4分)化简的结果为()A.B.C.D.4.(4分)已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2,B.2,1C.4,D.4,35.(4分)估计﹣2的值在()A.0到l之间B.1到2之问C.2到3之间D.3到4之间6.(4分)函数y=的自变量x的取值范围是()A.x>0B.x≥﹣2C.x>﹣2D.x≠﹣27.(4分)如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为()A.B.C.3D.8.(4分)若+|3﹣y|=0,则x﹣y的正确结果是()A.﹣1B.1C.﹣5D.5第2页(共32页)9.(4分)如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A.18﹣9πB.18﹣3πC.9﹣D.18﹣3π10.(4分)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.4011.(4分)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6B.32.1C.37.9D.39.412.(4分)如果关于x的分式方程﹣3=有负分数解,且关于x的不等式组的解集为x<﹣2,那么符合条件的所有整数a的积是()第3页(共32页)A.﹣3B.0C.3D.9二.填空题:(每小题4分,共24分)13.(4分)废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为立方米.14.(4分)=.15.(4分)如图,P是⊙O的直径AB延长线上一点,PC切⊙O于点C,PC=6,BC:AC=1:2,则AB的长为.16.(4分)为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为.17.(4分)如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为(﹣,5),D是AB边上一点,将△ADO沿直线OD翻折,使点A恰好落在对角线OB上的E点处,若E点在反比例函数y=的图象上,则k=.第4页(共32页)18.(4分)如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距米.三.解答题:(每小题8分,共16分)19.(8分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.20.(8分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.第5页(共32页)补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.四.解答题(每小题10分,共50分)21.(10分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).22.(10分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;(2)求△OCD的面积.23.(10分)“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m%小时,求m第6页(共32页)的值.24.(10分)有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后,能被x0+3整除,…,能被x0+n﹣1整除,则称这个n位数是x0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2的一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.25.(10分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.五.解答题(每小题12分,请按要求写出详细解答过程)26.(12分)如图1,已知抛物线y=﹣x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;第7页(共32页)(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.第8页(共32页)2018年重庆市重点中学中考数学模拟试卷(4)参考答案与试题解析一.选择题:(每小题4分,共48分)1.(4分)4的倒数的相反数是()A.﹣4B.4C.D.【分析】先求出4的倒数,再根据相反数即可解答.【解答】解:4的倒数是,的相反数﹣,故选:C.【点评】本题考查了倒数和相反数,解决本题的关键是熟记相反数,倒数的定义.2.(4分)如图图形既是中心对称又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形.故本选项正确;B、既不是轴对称图形,不是中心对称图形.故本选项错误;C、既不是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(4分)化简的结果为()A.B.C.D.第9页(共32页)【分析】先分母有理化,再合并同类二次根式即可.【解答】解:原式=+=.故选:A.【点评】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(4分)已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2,B.2,1C.4,D.4,3【分析】本题可将平均数和方差公式中的x换成3x﹣2,再化简进行计算.【解答】解:∵x1,x2,…,x5的平均数是2,则x1+x2+…+x5=2×5=10.∴数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是:′=[(3x1﹣2)+(3x2﹣2)+(3x3﹣2)+(3x4﹣2)+(3x5﹣2)]=[3×(x1+x2+…+x5)﹣10]=4,S′2=×[(3x1﹣2﹣4)2+(3x2﹣2﹣4)2+…+(3x5﹣2﹣4)2],=×[(3x1﹣6)2+…+(3x5﹣6)2]=9×[(x1﹣2)2+(x2﹣2)2+…+(x5﹣2)2]=3.故选:D.【点评】本题考查的是方差和平均数的性质.设平均数为E(x),方差为D(x).则E(cx+d)=cE(x)+d;D(cx+d)=c2D(x).5.(4分)估计﹣2的值在()A.0到l之间B.1到2之问C.2到3之间D.3到4之间【分析】依据<<,即可得到3<<4,进而得出1<﹣2<2.【解答】解:∵<<,∴3<<4,∴1<﹣2<2,故选:B.第10页(共32页)【点评】本题主要考查了估算无理数的大小,解决问题的关键是得到3<<4.6.(4分)函数y=的自变量x的取值范围是()A.x>0B.x≥﹣2C.x>﹣2D.x≠﹣2【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可求解.【解答】解:根据题意得:x+2>0,解得,x>﹣2故选:C.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.(4分)如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为()A.B.C.3D.【分析】本题已知了∠AED=∠B,易证得△ADE∽△ACB,由此可得出关于AE、AB,DE、BC的比例关系式;已知了AE、AB、DE的长,可根据比例关系式求出BC的值.【解答】解:∵∠AED=∠B,∠A=∠A∴△ADE∽△ACB∴∵DE=6,AB=10,AE=8∴,即BC=.第11页(共32页)故选:A.【点评】本题主要考查相似三角形的性质.难度较低.8.(4分)若+|3﹣y|=0,则x﹣y的正确结果是()A.﹣1B.1C.﹣5D.5【分析】根据非负数的性质,可得答案.【解答】解:由题意,得x﹣2=0,3﹣y=0,解得x=2,y=3.x﹣y=2﹣3=﹣1,故选:A.【点评】本题考查了非负数的性质,利用非负数的和为零得出x﹣2=0,3﹣y=0是解题关键.9.(4分)如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A.18﹣9πB.18﹣3πC.9﹣D.18﹣3π【分析】由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积﹣扇形DEFG的面积,根据面积公式计算
本文标题:2018年重庆市重点中学中考数学模拟试卷(4)
链接地址:https://www.777doc.com/doc-4132007 .html