您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 1000MW机组锅炉设计说明书
1.锅炉技术规范哈尔滨锅炉厂有限责任公司由三菱重工业株式会社(MitsuibishiHeavyIndustriesCo.Ltd)提供技术支持,为本工程设计的锅炉是超超临界变压运行直流锅炉,采用П型布置、单炉膛、低NOXPM主燃烧器和MACT型低NOx分级送风燃烧系统、反向双切园燃烧方式,炉膛采用内螺纹管垂直上升膜式水冷壁、循环泵启动系统、一次中间再热、调温方式除煤/水比外,还采用烟气分配挡板、燃烧器摆动、喷水等方式。锅炉采用平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构,燃用神府东胜煤、晋北煤。锅炉主要参数如下:项目单位BMCRBRL(夏季工况)BRL过热蒸汽流量t/h295328642733过热蒸汽出口压力Mpa(g)27.5627.3827.27过热蒸汽出口温度℃605605605再热蒸汽流量t/h244623662274再热器进口蒸汽压力Mpa(g)6.145.945.70再热器出口蒸汽压力Mpa(g)5.945.755.51再热器进口蒸汽温度℃377370362再热器出口蒸汽温度℃603603603省煤器进口给水温度℃2982962932.设计条件2.1煤种电厂燃煤设计煤种为神府东胜煤,校核煤种为晋北烟煤,煤质分析数据及灰份组成如下表:名称及符号单位设计煤种(神府东胜煤)校核煤种(晋北煤)工业分析收到基全水分Mar%149.61空气干燥基水分Mad%8.49收到基灰分Aar%1119.77收到基挥发份Var%27.3322.82收到基固定碳FCar%47.6747.8收到基低位发热量Qnet,arKJ/kg2276022440哈氏可磨系数HGI5654.81元素分析收到基碳Car%60.3358.6收到基氢Har%3.623.36收到基氧Oar%9.957.28收到基氮Nar%0.690.79收到基全硫St,ar%0.410.63灰熔融性变形温度DT℃11301110软化温度ST℃11601190流动温度FT℃12101270灰分分析二氧化硅SiO2%36.7150.41三氧化二铝Al2O3%13.9915.73三氧化二铁Fe2O3%13.8523.46氧化钙CaO%22.923.93氧化镁MgO%1.281.27五氧化二磷P2O5%--三氧化硫SO3%9.32.05氧化钠Na2O%1.231.23氧化钾K2O%0.721.12.2点火助燃用油油种#0轻柴油粘度(20℃时)1.2~1.67°E凝固点不高于0℃闭口闪点不低于65℃机械杂质无含硫量不大于1.0%水份痕迹灰份不大于0.025%比重817kg/m3低位发热值Qnet.ar41800KJ/kg2.3自然条件玉环地区气象有关数据如下:累年平均气压1004.9hPa年最高气压1028.4hPa年最低气压954.1hPa累年平均气温17.0℃极端最高气温34.7℃极端最低气温-5.4℃累年平均相对湿度80%累年最小相对湿度8%最大的月平均相对湿度91%(此时月平均最高气温25.5℃)累年平均水汽压17.7hPa累年平均降水量1368.9mm累年最大24小时降水量284.6mm累年最大1小时降水量147.0mm累年最长连续降水日数18d累年最大过程降水量225.3mm累年平均蒸发量1379.0mm累年平均雷暴日数37.5d累年平均雾日数49d累年最大积雪深度14cm累年平均风速5.2m/s累年十分钟平均最大风速40.6m/s(1994年8月21日)累年瞬时最大风速50.4m/s(1994年8月21日)50年一遇10M高压基本风压0.8kN/m3(初步)全年主导风向N(16%)夏季主导风向SW冬季主导风向N2.4锅炉运行条件锅炉运行方式:带基本负荷并参与调峰(锅炉的效率—负荷曲线见附图)。制粉系统:采用中速磨煤机直吹式制粉系统,每炉配6台磨煤机,煤粉细度按200目筛通过率为80%。给水调节:机组配置2×50%B-MCR调速汽动给水泵和一台启动用30%BMCR容量的电动调速给水泵。汽轮机旁路系统:暂定30%容量二级串联旁路。空气预热器进风:二次风进口侧加装暖风器。3.锅炉特点3.1技术特点本工程的锅炉是采用三菱重工技术设计的垂直水冷壁超超临界直流锅炉。从七十年代开始,全世界电力行业因调峰和周期性负荷运行方式的需要,要求火电机组从传统的定压带基本负荷运行方式改为变压调峰运行,因此三菱重工于七十年代末开发了适合变压运行的螺旋管圈水冷壁的超临界锅炉,首台螺旋管圈水冷壁超临界锅炉于1981年投运,MHI共生产了10台这种型式的大型超临界锅炉。由于螺旋管圈水冷壁结构较复杂,阻力较大,运行过程中的热应力也较大,MHI于80年中期开发了采用内螺纹管的垂直管圈水冷壁的变压运行超临界锅炉,首台机组于1989年投入商业运行,迄今已有11台采用垂直管圈水冷壁的超临界锅炉和超超临界锅炉投入运行。十多年的运行经验表明,垂直管圈水冷壁也适合于变压运行,且具有阻力小、结构简单、安装工作量较小、水冷壁在各种工况下的热应力较小等一系列优点,其技术特点如下:1)良好的变压、调峰和再启动性能:锅炉炉膛采用内螺纹管垂直水冷壁并采用较高的质量流速,能保证在变压运行的四个阶段即超临界直流、近临界直流、亚临界直流和启动阶段中控制金属壁温、控制高干度蒸干(DRO)、防止低干度高热负荷区的膜态沸腾(DNB)以及水动力的稳定性等,由于装设水冷壁中间混合集箱和采用节流度较大的装于集箱外面的较粗水冷壁入口管段的节流孔圈,对控制水冷壁的温度偏差和流量偏差均非常有利。而启动系统采用再循环泵,对于加速启动速度,保证启动阶段运行的可靠性、经济性均是有利的。2)燃烧稳定、热负荷分配均匀、防结渣性能良好的反向双切园燃烧方式:这种燃烧方式能保证沿炉膛水平方向均匀的热负荷分配。由于采用双切园使燃烧器数目倍增,降低了单只燃烧器的热功率,这些都对燃用结渣性强的神府东胜煤有利。同时,由于采用双切园方式,使单个燃烧器煤粉射流的射程变短,对于保证燃烧稳定性有利,解决了大型锅炉采用单切园正方形炉膛时燃烧器射程过长和炉膛水平截面气流充满度较差的难题。3)经济、高效的低NOX型PM主燃烧器和MACT型分级燃烧方式:MHI低NOX的PM型燃烧器已在97台大型煤粉锅炉中采用,而MACT型分级燃烧方式也已在数十台锅炉上采用,长期运行经验证明这种燃烧器的分级送风方式对降低炉内NOX生成量有明显的效果。4)采用适合高蒸汽参数的超超临界锅炉的高热强钢:由于锅炉的主汽和再热汽温度均在600℃以上,对高温级过热器和再热器,采用了在7台超临界和超超临界锅炉上已有7年以上运行经验的25Cr20NiNb钢(HR3C)和改良型细晶粒18Cr级奥氏体钢(Codecase2328),详见附表。这二种钢材对防止因管壁温度过高而引起的烟侧高温腐蚀和内壁蒸汽氧化效果明显。3.2结构特点1)采用改进型的内螺纹管垂直水冷壁,即在上下炉膛之间加装水冷壁中间混合集箱,以减少水冷壁沿各墙宽的工质温度和管子壁温的偏差,取消早期的在大直径水冷壁下集箱内装设小直径节流孔圈的设计,改为在小直径的下联箱外面较粗的水冷壁入口管段上装焊直径较大的节流孔圈以加大节流度,提高调节流量能力,然后通过三叉管过渡的方式与小直径的水冷壁管(φ28.6)相接,用控制各回路的工质流量的方法来控制各回路管子的吸热和温度偏差。三菱重工超临界与超超临界锅炉采用新型高热强钢业绩电站名称机组号额定出力过热蒸汽压力kg/cm2g过热汽温℃再热汽温℃蒸发量t/h燃料投运日期codecase2328SA213TP310HCbN原町110002505665932970煤1997-7采用采用三隅110002506006002900煤1998-7采用采用舞鹤19002505955952570煤2003-3采用采用敦贺27002465935932120煤2000-10采用采用神户17002465385662340煤2002-3采用采用岭北27002465935932120煤2002-7采用采用广野560025024.5Mpa(a)6006001770煤2002-7采用采用2)在保证水冷壁出口工质必需的过热度的前提下,采用较低的水冷壁出口温度(421℃),并把汽水分离器布置于顶棚、包墙系统的出口,这种设计和布置可以使整个水冷壁系统包括顶棚包墙管系统和分离器系统采用低合金钢SA213-T12(P12),所有膜式壁不需作焊后整屏热处理,也使工地安装焊接简化,对保证产品和安装质量有利。3)由于过热器和再热器大量采用优质高热强钢,管壁相对较薄,因此各级过热器可以采用较大直径的蛇形管(φ51~60)保证较低的过热器阻力,而在很多其它公司(特别是欧洲公司)的设计中,超临界和超超临界锅炉过热器均采用小直径管(φ38~44.5)以控制壁厚,这样导致较高的过热器阻力。4)汽温调节手段的多样化,除过热器采用三级六点的喷水外,直流运行时主要靠改变煤/水比来调节过热汽温,再热汽温主要调节手段为烟气分配挡板,而以燃烧器摆动作为辅助调节手段,再热器还在再热汽的入口管道上加装事故喷水减温装置。过热器采用三级喷水能更好消除工质通过前级部件所造成的携带偏差,也增加了调温能力。5)为降低过热器阻力,过热器在顶棚和尾部烟道包墙系统采用二种旁路系统,第一个旁路系统是顶棚管路系统,只有前水冷壁出口的工质流经顶棚管;第二个旁路为包墙管系统的旁路,即由顶棚出口集箱出来的蒸汽大部分送往包墙管系统,另有小部分蒸汽不经过包墙系统而直接用连接管送往后包墙出口集箱。水冷壁系统流程图6)过热器正常喷水水源来自省煤器出口的水,这样可减少喷水减温器在喷水点的温度差和热应力;但在非正常情况下,如果屏式过热器和末级过热器汽温和壁温过高,则可利用由给水管引出较低温度的水喷入,达到较好的减温效果。再热器喷水水源来自给水泵中间抽头。4.锅炉整体布置本锅炉采用单炉膛、П型布置、悬吊结构。燃烧器布置为反向双切园燃烧方式。锅炉的汽水流程以内置式汽水分离器为分界点,从水冷壁入口集箱到汽水分离器为水冷壁系统,从分离器出口到过热器出口集箱为过热器系统,另有省煤器系统、再热器系统和启动系统。过热器采用四级布置,即低温过热器(一级)→分隔屏过热器(二级)→屏式过热器(三级)→末级过热器(四级);再热器为二级,即低温再热器(一级)→末级再热器(二级)。其中低温再热器和低温过热器分别布置于尾部烟道的前、后竖井中,均为逆流布置。在上炉膛、折焰角和水平烟道内分别布置了分隔屏过热器、屏式过热器、末级过热器和末级再热器,由于烟温较高均采用顺流布置,所有过热器、再热器和省煤器部件均采用顺列布置,以便于检修和密封,防止结渣和积灰。水冷壁为膜式水冷壁,由于全部为垂直管屏,因此可以不必采用结构复杂的张力板来解决下部炉膛水冷壁的重量传递问题。为了使回路复杂的后水冷壁工作可靠,将后水冷壁出口集箱(折焰角斜坡管的出口集箱)出口工质分别送往后水冷壁吊挂管和水平烟道二侧包墙二个平行回路,然后再用连接管送往顶棚出口集箱,与前水冷壁和二侧水冷壁出口的工质汇合后再送往顶棚包墙系统,这样的布置方式在避免后水冷壁回路在低负荷时发生水动力的不稳定性和减少温度偏差方面较为合理和有利。烟气流程如下:依次流经上炉膛的分隔屏过热器、屏式过热器、末级过热器、末级再热器和尾部转向室,再进入用分隔墙分成的前、后二个尾部烟道竖井,在前竖井中烟气流经低温再热器和前级省煤器,另一部分烟气则流经低温过热器和后级省煤器,在前、后二个分竖井出口布置了烟气分配挡板以调节流经前、后分竖井的烟气量,从而达到调节再热器汽温的目的。烟气流经分配挡板后通过连接烟道和回转式空气预热器排往电气除尘器和引风机。流经省煤器出口烟气分配挡板的烟气由连接烟道送往回转式空气预热器。锅炉启动系统为带再循环泵系统,二只立式内置式汽水分离器布置于锅炉的后部上方,由后竖井后包墙管上集箱引出的锅炉顶棚包墙系统的全部工质均通过4根连接管送入二只汽水分离器。在启动阶段,分离出的水通过水连通管与一只立式分离器贮水箱相连,而分离出来的蒸汽则送往水平低温过热器的下集箱。分离器贮水箱中的水经疏水管排入再循环泵的入口管道,作为再循环工质与
本文标题:1000MW机组锅炉设计说明书
链接地址:https://www.777doc.com/doc-4141015 .html