您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 泰勒级数的若干展开方法_曹倩倩
20167303YINSHANACADEMICJOURNALJul.2016Vo1.30No.3*?234000。。O173.1A1004-1869201603-0020-041。11fxf'x…fnx…2fxx=x0fx0f'x0…fnx0…3fx0+f'x0x-x0+fx02x-x02+…+fnx0nx-x0n+…4Rnxx0Ux0。、23。。22.1。1exx=1。exx=0et=1+t+t22+…+tnn+…t<∞ex=ex-1+1=e·ex-1t=x-1ex=e∑∞n=0x-1nnx-1<∞。2.211-x=1+x+x2+…+xn+…x<1。2fx=13x-2x=2。02*2016-01-041987-。DOI:10.13388/j.cnki.ysajs.20160408.01513x-2=13x-2+4=14·11+34x-2=14·11--34x-2=14-342x-2+3243x-22-3344x-23+…=∑∞n=0-1n3n4n+1x-2nx-2<43。2.3“”。311-x=∑∞n=0xnx<111-xnn=23…x=0。11-x2=ddx11-x=ddx∑∞n=0xn=∑∞n=0ddxxn=∑∞n=1nxn-1=∑∞n=0n+1xnx<1…11-xk+1=1k·ddx11-xk=1k∑∞n=0ddxn+k-1…n+1k-1xn=∑∞n=0n+k…n+1kxnx<1。2.4“”。4fx=arctanxx=0。arctanx=∫0x11+x2dx11+x2=1-x2+x4-x6+…=∑∞n=0-1nx2nx<1arctanx=∫0x11+x2dx=∫0x∑∞n=0-1nx2ndx=∑∞n=0∫0x-1nx2ndx=∑∞n=0-1n2n+1x2n+1x<1。2.5。。5fx=exln1+xx=0。ex=1+x+x22+…+xnn+…x<∞ln1+x=x-x22+x33+…+-1n-1xnn+…x<1exln1+x=1+x+x22+x33+…x-x22+x33-x44+…=x+12x2+23x3+95x2+…+∑nk=0-1kk+1n-kxn+1+…x<1。。2.6。64fx=tanxx=0。fx=tanxx=0tanx=A1x+A3x3+A5x5+…sinx=A1x+A3x3+A5x5+…cosxx-x33+x55+…=A1x+A3x3+A5x5+…1-x22+x44+…=A1x+A3-A12x3+A5+A14-A32x5+…A1=1A3-A12=-13A5+A14-A32=15…A1=1A3=13A5=215…tanx=x+13x3+215x5+…x<π2。122.75。7fx=x2-8x+5x+2x-32x=0。fx=1x+2-2x-321x+2=12·11+x2=121-x2+x222-x323+…=12-x22+x223-x324+…x<21x-3=-13·11-x3=-131+x3+x232-x333+…=-13-x32-x233-x334-…x<31x-32=-ddx1x-3=-ddx∑∞n=0-xn3n+1=∑∞n=0ddxxn3n+1=∑∞n=1n3n+1xn-1=∑∞n=0n+13n+2xnx<32x-32=29∑∞n=0n+13nxnx2-8x+5x+2x-32=1x+2-2x-32=518-43108x+11216x2-3713888x3+40923328x4-…x<2。2.867。8fx=sin2xx=0。sin2x=121-cos2xcos2x=1-2x22+2x44-2x66+…=∑∞n=0-1n22n2nx2nsin2x=121-cos2x=∑∞n=0-1n-122n-12nx2n。、。2.9。9fx=e11-xx=0。fxx<1f'x=e11-x·11-x21-x2·f'x-fx=01-x2·f''x+2x-3f'x=0…f0=ef'0=ef''0=3ef'''0=13e…e11-x=e1+x+32x2+133x3+…x<1。2.10。10fx=excosxx=0。e1+ix=∑∞n=01+in·xnn=∑∞n=0槡2cosπ4+isinπ4n·xnn=∑∞n=02n2cosnπ4+isinnπ4·xnnx<∞excosx=∑∞n=02n2cosnπ4xnnx<∞exsinx=∑∞n=02n2sinnπ4·xnnx<∞。3222J.2012351278-83.3.J.2011350522-25.4.J.201140320-22.5.J.200561114-17.6.D.2010.7.J.201103106-108.ResearchontheInfluenceofCampusFootballPromotiontotheDevelopmentofPrimarySchoolSportsMAOQi-xiaFacultyofPhysicalEducationBaotouTeachersCollegeBaotou014030AbstractThepresentsituationandexistingproblemsofthedevelopmentofcampusfootballinprimaryschoolsinBaotoucitywerestudiedbythemethodsofinvestigationinterviewandinduction.Thepromotionofcampusfoot-ballwasconducivetothedevelopmentofBaotouprimaryschoolphysicaleducation.Itwaslackofprofessionalsportsteachersandlessfootballfieldintheprocessofcampusfootballpromotion.KeywordsCampusfootballPromotionBaotoucity檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶檶Primaryschoolsports22〔〕1.J.1998024-5.2.M.1980.3.J.200011341-352.4.M..2000.5.M..2001.6.M.2003.7.M.2005.8.J.199912046-7.SeveralExpansionMethodsofTaylorSeriesCAOQian-qianFacultyofMathematicsandStatisticsSuzhouUniversitySuzhou234000AbstractTaylorseriesisoneoftheimportantcontentsinhighermathematics.Butthegeneralteachingmate-rialsabouttheTaylorseriesexpansionmethodisnotdetailedenough.ThemethodofTaylorseriesexpansionandsomeexamplesarepresented.KeywordsFunctionTaylorseriesExpansionmethod23
本文标题:泰勒级数的若干展开方法_曹倩倩
链接地址:https://www.777doc.com/doc-4144245 .html