您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 数字电子技术基础(第3版)-李庆常-王美玲-课后习题答案
1第2222章逻辑代数及其化简2-1分别将十进制数29.625,127.175和378.425转换成二进制数。解答:(29.625)10=(1,1101.101)2(127.175)10=(111,1111.0010,1100,…)2(378.425)10=(1,0111,1010.0110,1100,…)22-2分别将二进制数101101.11010111和101011.101101转换成十进制数。解答:(101101.11010111)2=(45.83984375)10(101011.101101)2=(43.703125)102-3分别将二进制数100110.100111和101011101.1100111转换成十六进制数。解答:(100110.100111)2=(0010,0110.1001,1100)2=(26.9C)16(101011101.1100111)2=(1,0101,1101.1100,1110)2=(15D.CE)162-4分别将十六进制数3AD.6EBH和6C2B.4A7H转换成二进制数。解答:(3AD.6EB)16=(11,1010,1101.0110,1110,1011)2(6C2B.4A7)16=(110,1100,0010,1011.0100,1010,0111)22-5试用真值表法证明下列逻辑等式:(1)ABACBCABC++=+(2)ABABBCABABAC++=++(3)ABBCCAABBCCA++=++(4)ABABBCACABC+++=+(5)ABBCCDDAABCDABCD+++=+(6)ABABABCAB++=+证明:(1)ABACBCABC++=+2真值表如下所示:ABCABACBC++ABC+0000000111010000111110000101111101111111由真值表可知,逻辑等式成立。(2)ABABBCABABAC++=++真值表如下所示:ABCABABBC++ABABAC++0000000100010110111110011101111100011111由真值表可知,逻辑等式成立。(3)ABBCCAABBCCA++=++真值表如下所示:ABCABBCCA++ABBCCA++00000001110101101111310011101111101111100由真值表可知,逻辑等式成立。(4)ABABBCACABC+++=+真值表如下所示:ABCABABBCAC+++ABC+0001100111010110111110000101001100011111由真值表可知,逻辑等式成立。(5)ABBCCDDAABCDABCD+++=+真值表如下所示:ABCDABBCCDDA+++ABCDABCD+0000110001000010000011000100004010100011000011100100000100100101000101100110000110100111000111111由真值表可知,逻辑等式成立。(6)ABABABCAB++=+真值表如下所示:ABCABABABC++AB+0001100111010110111110011101111100011100由真值表可知,逻辑等式成立。2-6求下列各逻辑函数F的反函数F和对偶式F¢:(1)1FAABCAC=++(2)2()()()FABAABCABCABABC=++++++5(3)3FABCDADB=+++(4)4FABBDCABBD=+++++(5)()()5FABABBCBC=++(6)6FCDCDACDB=+++解答:(1)1FAABCAC=++1()()FAABCAC=+++1'()()FAABCAC=+++(2)2()()()FABAABCABCABABC=++++++2()()()FABAABCABCABABC=+++++++2'()()()FABAABCABCABABC=+++++++(3)3FABCDADB=+++3FABCDADB=+++3'FABCDADB=+++(4)4FABBDCABBD=+++++4()()()FABBDCABBD=+++4'()()()FABBDCABBD=+++(5)()()5FABABBCBC=++5()()()()FABABBCBC=+++++5'()()()()FABABBCBC=+++++(6)6FCDCDACDB=+++6()()()()FCDCDACDB=++++66'()()()()FCDCDACDB=++++2-7某逻辑电路有A、B、C共3个输入端,一个输出端F,当输入信号中有奇数个1时,输出F为1,否则输出为0,试列出此逻辑函数的真值表,写出其逻辑函数表达式,并画出逻辑电路图。解答:由题意可列出真值表如下:ABCF00000011010101101001101011001111由真值表可以得到函数表达式为:FABCABCABCABC=+++逻辑电路如图T2-7所示:ABCABCABCABCF图T2-72-8设计一个3人表决电路,要求:当输入A、B、C中有半数以上人同意时,决议才能通过,但A有否决权,如A不同意,即使B、C都同意,决议也不能通过。解答:定义变量A、B、C,1代表同意,0代表不同意;F为结果,1代表通过,0代表不能通过。由题意可列出真值表如下:7ABCF00000010010001101000101111011111由真值表可以得到函数表达式为FABCABCABC=++,化简可以得到FACAB=+。2-9试用代数公式法证明题2-5中的各等式。(1)ABACBCABC++=+证明:()ABACBCABABCABABCABC++=++=+=+(2)ABABBCABABAC++=++证明:()ABABBCABBCABABBCACABABABAC++=++=+++=++(3)ABBCCAABBCCA++=++证明:()()()()()()ABBCCAABBCBCCAABCAABBCCACAABBCABCABCABBCCACABCABABBCCA++=+++++=+++++=++++++++=++(4)ABABBCACABC+++=+证明:(1)ABABBCACABCACACBCABC+++=++=++=+8(5)ABBCCDDAABCDABCD+++=+证明:()()()()()()ABBCCDDAABBCCDDAABACBCCDCADAABCDABCD+++=++++=++++=+(6)ABABABCAB++=+证明:()()ABABABCABABABCAABCABBAB++=+++=+++=+2-10证明下列异或运算公式:(1)0AA?(2)1AA?(3)0AA?(4)1AA?(5)ABABA?(6)ABAB??解答:(1)0AA⊕=证明:000AAAAAA⊕=+=+=(2)1AA⊕=证明:11101011AAAAA⊕=+=+=+=iiii(3)0AA⊕=证明:00010AAAAAA⊕=+=+=iiii(4)1AA⊕=证明:91AAAAAAAAAAAA⊕=+=+=+=(5)ABABA⊕=证明:()()ABABABABABABABABABABABABA⊕=+=+++=+=ii(6)ABAB⊕=⊕证明:()()ABABABABABABABABABABABABABAB⊕=+=+=+==++=+=⊕2-11用公式法化简下列逻辑函数为最简与或式:(1)1()FABABABABCD=+++(2)2FABCACABCAC=+++(3)3()()FABABABAB=++(4)4()()FAABABCC=+++(5)5()FABACDBCD=+++(6)6()()()FABAABCABCABABC=++++++解答:(1)1()FABABABABCD=+++化简:1()()()()FABABABABCDAABABCDABABCDABABCDAB=+++=++=++=+=(2)2FABCACABCAC=+++化简:2()()()()FABCACABCACABCCABCACABCABCACABCABCACABCACABCACABCABCACABCABACACABCABAABCAABC=+++=+++=+++=++=⊕+=+=+++=+++=++=+=+⊙10(3)3()()FABABABAB=++化简:3()()()000FABABABABABABABABABABAB=++=+=+=+=(4)4()()FAABABCC=+++化简:4()()()()()0FAABABCCABABCABABC=+++=+++=+=(5)5()FABACDBCD=+++化简:5()()()()()()()()()()()()FABACDBCDABACDBCDAAACADABBCBDBCDACABBCADBDBCDACABADBDBCDACABADBCDABCACACDABABCABDABDACDADACABAD=+++=+++++=+++++++=++++++=+++++=++++=++++++++=++(6)6()()()FABAABCABCABABC=++++++化简:6()()()()FABAABCABCABABCAABCABCABABCACABCABABCABCABABBCABC=++++++=+++++=++++=++=++=++2-12用卡诺图化简下列逻辑函数为最简与或式:(1)1(3,5,6,7)Fm=å(2)2(4,5,6,7,8,9,10,11,12,13)Fm=å(3)3(2,3,6,7,10,11,12,15)Fm=å(4)4(1,3,4,5,8,9,13,15)Fm=å11(5)5(1,3,4,6,7,9,11,12,14,15)Fm=å(6)6(0,2,4,7,8,9,12,13,14,15)Fm=å解答:(1)13,5,6,7Fm=∑()卡诺图:BCA000111100001010111由卡诺图可知:13,5,6,7FmACABBC==++∑()(2)24,5,6,7,8,9,10,11,12,13Fm=∑()卡诺图:CDAB00011110000000011111111100101111由卡诺图可知:24,5,6,7,8,9,10,11,12,13FmABABAC==++∑()(3)32,3,6,7,10,11,12,15Fm=∑()卡诺图:CDAB0001111000001101001111101010001112由卡诺图可知:32,3,6,7,10,11,12,15FmABCDACBCCD==+++∑()(4)4134,5,8,9,13,15Fm=∑(,,)卡诺图:CDAB00011110000110011100110110101100由卡诺图可知:4134,5,8,9,13,15FmABDABCABDABC==+++∑(,,)(5)5134,6,7,9,11,12,1415Fm=∑(,,,)卡诺图:CDAB00011110000110011011111011100110由卡诺图可知:5134,6,7,9,11,12,1415FmBDBDCD==++∑(,,,)(6)6024,7,8,9,12,13,14,15Fm=∑(,,)卡诺图:CDAB0001111000100101101011111113101100由卡诺图可知:6024,7,8,9,12,13,14,15FmABACCDABCBCD==++++∑(,,)2-13对具有无关项0ABAC+=的下列逻辑函数进行化简:(1)1FACAB=+(2)2FACAB=+(3)3FABCABDABDABCD=+++(4)4FBCDABCDABCABD=+++(5)5FACDABCDABDABCD=+++(6)6FBCDABCDABCD=++解答:(1)1FACAB=+1FACABACABABACACBAC=+=+++=++(2)2FACAB=+解:2FACABACABABACBC=+=+++=+(3)3FABCABDABDABCD=+++3FABCABDABDABCDABACABCABA
本文标题:数字电子技术基础(第3版)-李庆常-王美玲-课后习题答案
链接地址:https://www.777doc.com/doc-4157846 .html