您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 21随机抽样(3课时)0hao
电视台的收视率2.1随机抽样为了回答我们碰到的许多问题,必须收集相关数据.如食品、饮料中的细菌是否超标,农作物的产量…这些问题都需要通过收集数据作出回答.统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。统计学中的几个概念所要考察对象的全体总体中的每一个对象从总体中抽取的一个部分样本中个体的个数总体个体样本样本容量这里面总体、个体、样本、样本容量分别是什么?思考:为了了解高一(1)班49名同学的视力情况,从中抽取10名同学进行检查。问题1:为了了解全国高中生的视力情况,需要将全中国所有高中生逐一进行检查吗?问题2:要检查某超市销售的牛奶含菌量是否合格,需要将该超市的所有牛奶的包装袋都打开逐一检查吗?容量大!有破坏性!2、如何设计抽样方法,使抽取的样本能真正代表总体?如怎么判断一锅汤的味道如何?高质量的数据来自“搅拌均匀”的总体,使每个个体有同样的机会被抽中。思考:1.上面两个问题说明了什么?在抽样调查中,样本的选择是至关重要的,样本能否代表总体,直接影响着统计结果的可靠性。下面的故事是一次著名的失败的统计调查,被称为抽样中的泰坦尼克事件。它可以帮助我们理解为什么一个好的样本如此重要。阅读一个著名的案例在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意调查。调查兰顿(当时任堪萨斯州州长)和罗斯福(当时的总统)中谁将当选下一届总统。为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有)。通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜。实际上选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:3857兰顿6243罗斯福选举结果预测结果候选人00000000思考[问题]:你认为预期结果出错的原因是什么?原因是:用于统计推断的样本来自少数富人,只能代表富人的观点,不能代表全体选民的观点(样本不具有代表性)。§2.1.1简单随机抽样问题3:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎么做?将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回的摸取(这样可以保证每一袋饼干被抽取的机会相等),这样我们就可以得到一个简单随机样本,相应的抽样方法就是简单随机抽样一般地,设一个总体的个体数为N,从中逐个不放回地抽取n个个体作为一个样本,如果每次抽取时总体内的各个个体被抽到的机会相等,就称这样的抽样为简单随机抽样。简单随机抽样说明:(1)被抽取样本的总体的个体数有限;(2)从总体中逐个进行抽取;(3)一种不放回抽样;(4)每个个体能被选入样本的可能性是相同的。简单随机抽样简单随机抽样是在特定总体中抽取样本,总体中每一个体被抽取的可能性是等同的,而且任何个体之间彼此被抽取的机会是独立的。判断:下列抽取样本的方式是否属于简单随机抽样?(1)从无限多个个体中抽取100个个体作为样本(2)盒子里共有80个零件,从中选出5个零件进行质量检验,在抽取操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里。(3)从20件玩具中一次性抽取3件进行质量检验。1.抽签法(抓阄法)把总体中的N个个体编号,并把号码写在形状、大小相同的号签上,将号签放在同一个容器里,搅拌均匀后,每次从中抽出1个号签,连续抽取n次,得到一个容量为n的样本。简单随机抽样——抽签法开始49名同学从1到49编号制作1到49个号签将49个号签搅拌均匀随机从中抽出10个签对号码一致的学生检查结束例1.为了了解高一(1)班49名同学的视力情况,从中抽取10名同学进行检查。49名同学从1到49编号将49个号签搅拌均匀对号码一致的学生检查开始制作1到49个号签随机从中抽出10个签结束抽签法的一般步骤:(1)将总体中的N个个体编号(号码从1到N);(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,并记录其编号,连续抽出n次;(5)将总体中与抽到的号签编号一致的n个个体取出。(总体个数N,样本容量n)抽签法的一般步骤:(1)将总体中的N个个体编号(号码从1到N);(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,并记录其编号,连续抽出n次;(5)将总体中与抽到的号签编号一致的n个个体取出。(总体个数N,样本容量n)开始编号制签搅匀抽签取出个体结束思考:你认为抽签法有什么优点和缺点?优点:抽签法能够保证每个个体入选样本的机会都相等缺点:(1)当总体的个数较多时,制作号签的成本将会增加(2)号签很多时,“搅拌均匀”比较困难,结果很难保证每个个体入选样本的可能性相同用随机数表法抽取样本的步骤:①将总体中的所有个体编号(每个号码位数一致);②在随机数表中选定开始的数字(确定行数列数);③从选定的数开始按一定方向读数,若得到的号码大于总体编号或与前面所取出的号码重复的去掉,如此进行下去,直到取满为止;④根据选定的号码抽取样本。简单随机抽样——2.随机数法随机数表、随机数骰子、计算机产生的随机数例2:假设我们要考察某公司生产的袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行:①先将800袋牛奶编号,可以编为000,001,…,799;②在随机数表中任选一个数;③从选定的数开始向右(读数的方向可以是向左,向上,向下等),得到满足的数将它取出,继续向右读,直到样本的60个号码全部取出。练习利用随机数表法从500件产品中抽取40件进行质检.(1)这500件产品可以怎样编号?(2)如果从随机数表第10行第8列的数开始往左读数,则最先抽取的5件产品的编号依次是什么?随机数表法注意:1、随机数表是统计工作者用计算机生成的随机数,并保证表中的每个位置上的数字是等可能出现的。2、用随机数表抽取样本,可以任选一个数作为开始,读数的方向可以向左,也可以向右、向上、向下等等。因此并不是唯一的.3、由于随机数表是等可能的,因此利用随机数表抽取样本保证了被抽取个体的可能性是相等的。巩固练习1、对于简单随机抽样,个体被抽到的机会()A.相等B.不相等C.与抽取的次数有关D.不确定2、从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25℅,则N=_____3、高一(1)班有49名学生,学号从01到49,数学老师在上统计课的时候,运用随机数表法选6名同学,老师首先选定随机数表法从第21行第29列开始,依次向右读取,这5位同学的号码依次为___________________________A12026、04、33、46、092.1.2系统抽样1.简单随机抽样的概念•适用范围:总体中个体数较少的情况,抽取的样本容量也较小时。复习回顾:一般地,设一个总体的个体数为N,如果通过逐个不放回地抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。2.用抽签法抽取样本的步骤:简记为:编号;制签;搅匀;抽签;取个体。3.用随机数表法抽取样本的步骤:简记为:编号;选起始数;读数;取个体。问题4:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查。除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?简单随机抽样适用于个体数不太多的总体。那么当总体个体数较多时,宜采用什么抽样方法呢?分析:我们按这样的方法来抽样:首先将这500名学生从1开始进行编号,然后按号码顺序以一定的间隔进行抽取。由于=10,这个间隔可以定为10,即从号码为1-10的第一个间隔中随机地抽取一个号码,假如抽到的是6号,然后从第6号开始,每隔10个号码抽取一个,得到6,16,26,36,…,496。这样就得到一个容量为50的样本50050这种抽取方法是系统抽样。系统抽样现将总体中的个体逐一编号,然后按号码顺序以一定的间隔k进行抽取,先从第一个间隔中随机地抽取一个号码,然后逐个抽取的号码依次增加间隔数即得到所求样本。当总体不能被样本容量整除时怎么办系统抽样的特点:(1)用系统抽样抽取样本时,每个个体被抽到的可能性是相等的,(2)系统抽样适用于总体中个体数较多,抽取样本容量也较大时;(3)系统抽样是不放回抽样。个体被抽取的概率等于Nn知识探究(二):系统抽样的操作步骤思考1:用系统抽样从总体中抽取样本时,首先要做的工作是什么?将总体中的所有个体编号.思考2:如果用系统抽样从605件产品中抽取60件进行质量检查,由于605件产品不能均衡分成60部分,对此应如何处理?先从总体中随机剔除5个个体,再均衡分成60部分.用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个体编号,通常是将第1段抽取的号码依次累加间隔k.思考3:用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取?探究:一般地,用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,其操作步骤如何?系统抽样的步骤:(1)采用随机的方式将总体中的个体编号;(2)将整个的编号按一定的间隔(设为K)分段,当(N为总体中的个体数,n为样本容量)是整数时,;当不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数能被n整除,这时,,并将剩下的总体重新编号;(3)在第一段中用简单随机抽样确定起始的个体编号;(4)将编号为的个体抽出。NnNknNn'N'Nkn,,2,...,(1)llklklnkl简记为:编号;分段;在第一段确定起始号;加间隔获取样本。思考:系统抽样与简单随机抽样比较,有何优、缺点?(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;(2)系统抽样的效果会受个体编号的影响,而简单随机抽样的效果不受个体编号的影响。系统抽样所得样本的代表性和具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈现一定的周期性,可能会使系统抽样的代表性很差.例如学号按照男生单号女生双号的方法编排,那么,用系统抽样的方法抽取的样本就可能会是全部男生或全部女生.(3)系统抽样比简单随机抽样的应用范围更广.例1.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,6,16,32[分析]用系统抽样的方法抽取至的导弹编号应该k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中用简单随机抽样方法得到的数,因此只有选项B满足要求,故选B.练习:简单随机抽样520为了了解某地区参加数学竞赛的1005名学生的数学成绩,打算从中抽取一个容量为50的样本,现用系统抽样的方法,需要用方法先从总体中剔除个个体,然后按编号顺序每间隔_____个号码抽取一个.理论迁移例2某中学有高一学生322名,为了了解学生的身体状况,要抽取一个容量为40的样本,用系统抽样法如何抽样?第二步,随机剔除2名学生,再把余下的320名学生随机编号为1,2,3,…320.第五步,从该号码起,每间隔8个号码抽取1个号码,就可得到一个容量为40的样本.第四步,在第1部分用抽签法确定起始编号.第三步,把总体分成40个部分,每个部分有8个个体.第一步,采用随机的方式给个体编号,1,2,…,3222.系统抽样适合于总体的个体数较多的情形,操作上分四个步骤进行,除了剔除余数个体和确定起始号需要随机抽样外,其余样本号码由事先定下的规则自动生成,从而使得系统抽样操作简单、方便.小结1.系统抽样也是等概率抽样,即每个个体被抽到的概率是相等的,从而保证了
本文标题:21随机抽样(3课时)0hao
链接地址:https://www.777doc.com/doc-417051 .html