您好,欢迎访问三七文档
向量的基本概念公式:1.向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法AB;字母表示:a;坐标表示法a=xi+yj=(x,y).(3)向量的长度:即向量的大小,记作|a|.(4)特殊的向量:零向量a=O|a|=O.单位向量:aO为单位向量|aO|=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)2121yyxx(6)相反向量:a=-bb=-aa+b=0(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a∥b.平行向量也称为共线向量.2.向量的运算运算类型几何方法坐标方法运算性质向量的加法1.平行四边形法则2.三角形法则1212(,)abxxyyabba()()abcabcACBCAB向量的减法三角形法则1212(,)abxxyy()ababABBA,ABOAOB数乘向量1.a是一个向量,满足:||||||aa2.0时,aa与同向;0时,aa与异向;=0时,0a.(,)axy()()aa()aaa()abab//abab3.向量的夹角:已知两个非零向量a与b,作OA=a,OB=b,则∠AOB=(001800)叫做向量a与b的夹角。4.两个向量的数量积:已知两个非零向量a与b,它们的夹角为,则a·b=︱a︱·︱b︱cos.其中︱b︱cos称为向量b在a方向上的投影.5.向量的数量积的性质:若a=(11,yx),b=(22,yx)则e·a=a·e=︱a︱cos(e为单位向量);a⊥ba·b=012120xxyy(a,b为非零向量);︱a︱=2211aaxy;cos=abab=121222221122xxyyxyxy.6.向量的数量积的运算律:a·b=b·a;(a)·b=(a·b)=a·(b);(a+b)·c=a·c+b·c.7.重要定理、公式(1)平面向量基本定理e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)两个向量平行的充要条件a∥ba=λb(b≠0)x1y2-x2y1=O.(3)两个向量垂直的充要条件a⊥ba·b=Ox1x2+y1y2=O.(4)线段的定比分点公式设点P分有向线段21PP所成的比为λ,即PP1=λ2PP,则.1,12121yyyxxx(线段定比分点的坐标公式)当λ=1时,得中点公式:OP=21(1OP+2OP)或.2,22121yyyxxx
本文标题:向量的基本概念公式
链接地址:https://www.777doc.com/doc-4203233 .html