您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 38控制科学与工程前沿论坛
JIANGSUUNIVERSITY控制科学与工程前沿论坛报告任课老师:刘国海专业班级:控制工程1604学生姓名:丁帅学生学号:z16070502017年4月一智能控制一个系统如果具有感知环境、不断获得信息以减小不确定性和计划、产生以及执行控制行为的能力,即称为智能控制系统。智能控制技术是在向人脑学习的过程中不断发展起来的,人脑是一个超级智能控制系统,具有实时推理、决策、学习和记忆等功能,能适应各种复杂的控制环境。智能控制与传统的或常规的控制有密切的关系,不是相互排斥的。常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。(1)传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,比如工业过程的病态结构问题、某些干扰的无法预测,致使无法建立其模型,这些问题对基于模型的传统自动控制来说很难解决。(2)传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息。另外,通常的自动装置不能接受、分析和感知各种看得见、听得着的形象、声音的组合以及外界其它的情况。为扩大信息通道,就必须给自动装置安上能够以机械方式模拟各种感觉的精确的送音器,即文字、声音、物体识别装置。可喜的是,近几年计算机及多媒体技术的迅速发展,为智能控制在这一方面的发展提供了物质上的准备,使智能控制变成了多方位“立体”的控制系统。(3)传统的自动控制系统对控制任务的要求要么使输出量为定值(调节系统),要么使输出量跟随期望的运动轨迹(跟随系统),因此具有控制任务单一性的特点,而智能控制系统的控制任务可比较复杂,例如在智能机器人系统中,它要求系统对一个复杂的任务具有自动规划和决策的能力,有自动躲避障碍物运动到某一预期目标位置的能力等。对于这些具有复杂的任务要求的系统,采用智能控制的方式便可以满足。(4)传统的控制理论对线性问题有较成熟的理论,而对高度非线性的控制对象虽然有一些非线性方法可以利用,但不尽人意。而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径。工业过程智能控制系统除具有上述几个特点外,又有另外一些特点,如被控对象往往是动态的,而且控制系统在线运动,一般要求有较高的实时响应速度等,恰恰是这些特点又决定了它与其它智能控制系统如智能机器人系统、航空航天控制系统、交通运输控制系统等的区别,决定了它的控制方法以及形式的独特之处。(5)与传统自动控制系统相比,智能控制系统具有足够的关于人的控制策略、被控对象及环境的有关知识以及运用这些知识的能力。(6)与传统自动控制系统相比,智能控制系统能以知识表示的非数学广义模型和以数学表示的混合控制过程,采用开闭环控制和定性及定量控制结合的多模态控制方式。(7)与传统自动控制系统相比,智能控制系统具有变结构特点,能总体自寻优,具有自适应、自组织、自学习和自协调能力。(8)与传统自动控制系统相比,智能控制系统有补偿及自修复能力和判断决策能力。总之,智能控制系统通过智能机自动地完成其目标的控制过程,其智能机可以在熟悉或不熟悉的环境中自动地或人—机交互地完成拟人任务。智能控制是以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其中应用较多的有模糊逻辑、神经网络、专家系统、遗传算法等理论和自适应控制、自组织控制、自学习控制等技术。二模糊控制模糊控制综合了专家的操作经验,具有不依赖被控对象的精确数学模型、设计简单、便于应用、抗干扰能力强、响应速度快、易于控制和掌握、对系统参数的变化有较强的鲁棒性等特点,在经典控制理论和现代控制理论难以应用的场合发挥了很大的作用。近年来,模糊集理论及应用研究不断深入,取得了一系列成功的应用和理论成果,在自动控制、信号处理、模式识别、通信等领域得到了广泛的应用。目前,模糊控制已成为智能控制的一个主要分支。为了更深入地开展模糊控制技术的研究和应用,本文对模糊控制近期研究的一些热点问题进行简要的归纳介绍。2.1模糊控制的热点问题任何一个自动控制系统要正常工作,首先必须是稳定的。由于模糊系统本质上的非线性和缺乏统一的系统描述,使得人们难以利用现有的控制理论和分析方法对模糊控制系统进行分析和设计,因此,模糊控制理论的稳定性分析一直是一个难点课题,未形成较为完善的理论体系。正因为如此,关于模糊系统的稳定性分析近年来成为众人关注的热点,发表的论文较多,提出了各种思想和分析方法。目前模糊控制系统稳定性分析方法主要有以下几种:(1)李亚普诺夫方法基于李亚普诺夫直接方法,许多学者讨论了离散时间和连续时间模糊控制系统的稳定性分析和设计。其中,Tanaka和Sano将其中的基本稳定性条件推广到SISO系统的(非)鲁棒稳定性条件,稳定性判据变为从一组李亚普诺夫不等式中寻找一个共同的李亚普诺夫函数问题。使用李亚普诺夫线性化方法,Ying建立了包括非线性对象的T-S模糊控制系统局部稳定性的必要和充分条件。另外,一种在大系统中使用的向量李亚普诺夫直接方法,被用于推导多变量模糊系统的稳定性条件;李亚普诺夫第二方法被用于判别模糊系统量比因子选择的稳定性;波波夫一李亚普诺夫方法被用于研究模糊控制系统的鲁棒稳定性。但是,李亚普诺夫的一些稳定性条件通常比较保守,即当稳定性条件不满足时,控制系统仍是稳定的。(2)基于滑模变结构系统的稳定性分析方法由于模糊控制器是采用语义表达,系统设计中不易保证模糊控制系统的稳定性和鲁棒性。而滑模控制有一个明显的特点,即能处理控制系统的非线性,而且是鲁棒控制。因此一些学者提出设计带有模糊滑模表面的模糊控制器,从而能用李亚普诺夫理论来获得闭环控制系统稳定性的证明。Palm和Driankov采用滑模控制的概念分析了增益规划的闭环模糊控制系统的稳定性和鲁棒性。另有一些学者用模糊推理来处理控制系统的非线性和减少控制震颤,使得基于李亚普诺夫方法可保证控制系统的稳定性。基于变结构系统理论,可以得到控制系统的跟踪精度和模糊控制器的I/O模糊集映射形状之间的关系,从而可以解释模糊控制器的鲁棒性和控制性能。文献等研究了基于变结构控制框架的模糊控制系统的稳定性,通过输出反馈的模糊变结构控制,并用李亚普诺夫方法证明了闭环控制系统是全局有界输入有界输出稳定的。若使用变结构控制类型的模糊规则集,模糊控制器从语义和定量上可显示出变结构的特性。为便于李亚普诺夫稳定性判据能指导设计和调整模糊控制器,文献推导出模糊控制器的具体数学表达式。(3)描述函数方法描述函数方法可用于预测极限环的存在、频率、幅度和稳定性。通过建立模糊控制器与多值继电控制器的关系,描述函数方法可用于分析模糊控制系统的稳定性。另外,指数输入的描述函数技术也能用于研究模糊控制系统的暂态响应。虽然描述函数方法能用于SISO和MISO模糊控制器以及某些非线性对象模型,但不能用于三输入及以上的模糊控制器。并且由于这种方法一般应用于非线性系统中确定周期振荡的存在性,因此只是一种近似稳定性分析方法。(4)圆稳定性判据方法圆判据可用于分析和再设计一个模糊控制系统。使用扇区有界非线性的概念,一般化的奈魁斯特(圆)稳定性判据可用于分析SISO和MIMO模糊系统的稳定性,并且扩展圆判据可用于推导一类简单模糊PI控制系统稳定性的充分条件。由于圆判据要求比较严格,Furutani提出一种移动的波波夫判据,用于分析模糊控制系统的稳定性。当此判据中参数θ设为零时,该判据与圆判据一致。除了以上介绍的方法外,模糊控制系统的稳定性分析还有相平面法、关系矩阵分析法、超稳定理论、Popov判据、模糊穴―穴映射、数值稳定性分析方法以及最近出现的鲁棒控制理论分析方法和LMI(矩阵不等式)凸优化方法等。2.2自适应模糊控制器的研究为了提高模糊控制系统的自适应能力,许多学者对自适应模糊控制器进行了研究,研究方向主要集中在以下方面。(1)自校正模糊控制器自校正模糊控制器是在常规模糊控制的基础上,采用加权推理决策,并引入协调因子,根据系统偏差e和偏差变化ec的大小,预测控制系统中的不确定量并选择一个最佳的控制参数或控制规则集,在线自动调整保守和大胆控制的混合程度,从而更全面确切地反映出人对诸因素的综合决策思想,提高系统的控制精度和鲁捧性能。目前这种变结构的自校正模糊控制器是根据被调量e和ec在线选取最佳控制规则及控制决策的,而对于一些复杂的生产过程,其生产工艺和环境因素都较为复杂,往往不能只考虑系统的偏差和偏差变化率来确定其控制策略,难于总结出比较完整的经验,此时模糊控制规则或者缺乏,或者很粗糙,并且当被控对象参数发生变化或受到随机干扰影响时,都会影响模糊控制的效果。(2)自组织模糊控制器自组织模糊控制器能自动对系统本身的参数或控制规则进行调整,使系统不断完善,以适应不断变化的情况,保证控制达到所希望的效果。它根据自动测量得到的实际输出特征和期望特征的偏差,确定输出响应的校正量并转化控制校正量,调整模糊控制规则,作用于被控对象。其基本特征是:控制算法和规则可以通过在线修改,变动某几个参数可以改变控制结果。它不仅仅是局限于某个对象,而是通过自组织适应几类对象。2.3模糊控制的发展前景在模糊控制的发展初期,大多数学者的主要精力放在模糊控制的应用研究上,在很多领域取得辉煌的成果。但与应用的成果相比,模糊控制的系统分析和理论研究却没有显著进展,以至于西方的一些学者对模糊控制的理论依据和有效性产生疑虑。1993年7月,在美国第十一届人工智能年会上,加州大学圣地亚哥分校计算机科学和工程系助教授ClarlesElkan博士的一篇题为“模糊逻辑似是而非的成功”报告,就代表了这种思想。虽然C.Elkan的一些观点是不确切和片面的,会后很多专家对此进行了批驳,但他确确实实指出了模糊控制理论基础不够坚实的缺点,从而引起了模糊控制领域的学者的广泛关注并加强了对这一方面的研究。通过上节的介绍可以看到,目前模糊控制的理论研究很热,并已取得了许多显著进展,模糊控制在理论上和应用方面都取得了巨大成就。虽然模糊控制技术发展历史只有三十年,本身还有待于完善,理论与实际的结合也有待于进一步探索,但是其发展前景十分诱人。目前在国际大趋势的推动下,模糊控制已开始向多元化和交叉学科方向发展。国外专家预言:模糊技术、神经网络技术、混沌理论作为人工智能的三大支柱,将是下一代工业自动化的基础。随着模糊控制理论研究的不断完善和应用的广泛深入、高性能模糊控制器的研究开发,模糊控制技术将会更大限度地发挥其优势,为工业过程控制、运动控制和其它领域的控制开辟新的应用前景。三神经网络控制自适应控制是一种特殊的反馈控制,它不是一般的系统状态反馈或输出反馈,即使对于现行定常的控制对象,自适应控制亦是非线性时变反馈控制系统。这种系统中的过程状态可划分为两种类型,一类状态变化速度快,另一类状态变化速度慢。慢变化状态可视为参数,这里包含了两个时间尺度概念:适用于常规反馈控制的快时间尺度以及适用于更新调节参数的慢时间尺度,这意味着自适应控制系统存在某种类型的闭环系统性能反馈。人工神经网络(简称ANN)是也简称为神经网络(NNS)或称作连接模型,是对人脑或自然神经网络若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。”这一定义是恰当的。人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型。目前在神经网络研究方法上已形流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征
本文标题:38控制科学与工程前沿论坛
链接地址:https://www.777doc.com/doc-4224116 .html