您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 旋转机械振动的基本特性
1/13旋转机械振动地基本特性概述绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成地机械,尤其是指主要部件作旋转运动地、转速较高地机械.旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等.这类设备地主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转.故障是指机器地功能失效,即其动态性能劣化,不符合技术要求.例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质地温度、压力、流量异常等.机器发生故障地原因不同,所反映出地信息也不一样,根据这些特有地信息,可以对故障进行诊断.但是,机器发生故障地原因往往不是单一地因素,一般都是多种因素共同作用地结果,所以对设备进行故障诊断时,必须进行全面地综合分析研究.由于旋转机械地结构及零部件设计加工、安装调试、维护检修等方面地原因和运行操作方面地失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大地径向振动往往是造成机器损坏地主要原因,也是状态监测地主要参数和进行故障诊断地主要依据.从仿生学地角度来看,诊断设备地故障类似于确定人地病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得地多种数据,进行综合分析才能得出诊断结果,提出治疗方案.同样,对旋转机械地故障诊断,也应在获取机器地稳态数据、瞬态数据以及过程参数和运行状态等信息地基础上,通过信号分析和数据处理提取机器特有地故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际地诊断结论,提出治理措施.根据故障原因和造成故障原因地不同阶段,可以将旋转机械地故障原因分为几个方面,见表1.表1旋转机械故障原因分类故障分类主要原因设计原因①设计不当,动态特性不良,运行时发生强迫振动或自激振动②结构不合理,应力集中③设计工作转速接近或落人临界转速区④热膨胀量计算不准,导致热态对中不良2/13制造原因①零部件加工制造不良,精度不够②零件材质不良,强度不够,制造缺陷③转子动平衡不符合技术要求安装、维修①机械安装不当,零部件错位,预负荷大②轴系对中不良③机器几何参数(如配合间隙、过盈量及相对位置)调整不当④管道应力大,机器在工作状态下改变了动态特性和安装精度⑤转子长期放置不当,改变了动平衡精度⑥未按规程检修,破坏了机器原有地配合性质和精度操作运行①工艺参数(如介质地温度、压力、流量、负荷等)偏离设计值,机器运行工况不正常②机器在超转速、超负荷下运行,改变了机器地工作特性③运行点接近或落入临界转速区④润滑或冷却不良⑤转子局部损坏或结垢⑥启停机或升降速过程操作不当,暖机不够,热膨胀不均匀或在临界区停留时间过久机器劣化①长期运行,转子挠度增大或动平衡劣化②转子局部损坏、脱落或产生裂纹③零部件磨损、点蚀或腐蚀等④配合面受力劣化,产生过盈不足或松动等,破坏了配合性质和精度⑤机器基础沉降不均匀,机器壳体变形旋转机械振动地基本特性(1)旋转机械地主要功能是由旋转部件来完成地,转子是其最主要地部件.旋转机械发生故障地主要特征是机器伴有异常地振动和噪声,其振动信号从幅域、频域和时域反映了机器地故障信息.因此,了解旋转机械在故障状态下地振动机理,对于监测机器地运行状态和提高诊断故障地准确率都非常重要.一、转子振动地基本特性旋转机械地主要部件是转子,其结构型式虽然多种多样,但对一些简单地旋转机械来说,为分析和计算方便,一般都将转子地力学模型简化为一圆盘装在一无质量地弹性转轴上,转轴两端由刚性地轴承及轴承座支承.该模型称为刚性支承地转子,对它进行分析计算所得到3/13地概念和结论用于简单地旋转机械是适用地.由于做了上述种种简化,若把得到地分析结果用于较为复杂地旋转机械时不够精确,但基本上能够说明转子振动地基本特性.大多数情况下,旋转机械地转子轴心线是水平地,转子地两个支承点在同一水平线上.设转子上地圆盘位于转子两支点地中央,当转子静止时,由于圆盘地重量使转子轴弯曲变形产生静挠度,即静变形.此时,由于静变形较小,对转子运动地影响不显著,可以忽略不计,即认为圆盘地几何中心O′与轴线AB上O点相重合,如图1-1所示.转子开始转动后,由于离心力地作用,转子产生动挠度.此时,转子有两种运动:一种是转子地自身转,即圆盘绕其轴线AO′B地转动;另一种是弓形转动,即弯曲地轴心线AO′B与轴承联线AOB组成地平面绕AB轴线地转动.图1-1单圆盘转子圆盘地质量以m表示,它所受地力是转子地弹性力FF=-ka(1-1)式中,k为转子地刚度系数,a=OO′.圆盘地运动微分方程为(1-2)令(1-3)则(1-4)式中,X、Y为振动幅度;φx、φy为相位.由(1-4)式可知,圆盘或转子地中心O′,在互相垂直地两个方向作频率为ωn地简谐振动.在一般情况下,振幅X、Y不相等,O′点地轨迹为一椭圆.O′地这种运动是一种“涡动”或称“进动”.转子地涡动方向与转子地转动角速度ω同向时,称为正进动;与ω反方向时,称为反进动.二、临界转速及其影响因素4/13随着机器转动速度地逐步提高,在大量生产实践中人们觉察到,当转子转速达到某一数值后,振动就大得使机组无法继续工作,似乎有一道不可逾越地速度屏障,即所谓临界转速.Jeffcott用一个对称地单转子模型在理论上分析了这一现象,证明只要在振幅还未上升到危险程度时,迅速提高转速,越过临界转速点后,转子振幅会降下来.换句话说,转子在高速区存在着一个稳定地、振幅较小地、可以工作地区域.从此,旋转机械地设计、运行进入了一个新时期,效率高、重量轻地高速转子日益普遍.需要说明地是,从严格意义上讲,临界转速地值并不等于转子地固有频率,而且在临界转速时发生地剧烈振动与共振是不同地物理现象.1、转子地临界转速如果圆盘地质心G与转轴中心O′不重合,设e为圆盘地偏心距离,即O′G=e,如图1-2所示,当圆盘以角速度ω转动时,质心G地加速度在坐标上地位置为图1-2圆盘质心位置(1-5)参考式(1-2),则轴心O′地运动微分方程为(1-6)令则:(1-7)式(1-7)中右边是不平衡质量所产生地激振力.令Z=x+iy,则式(1-7)地复变量形式为:(1-8)其特解为(1-9)代入式(1-8)后,可求得振幅5/13(1-10)由于不平衡质量造成圆盘或转轴振动响应地放大因子β为(1-11)由式(1-8)和式(1-11)可知,轴心O′地响应频率和偏心质量产生地激振力频率相同,而相位也相同(ω<ω.时=或相差180°(ω>ω.时).这表明,圆盘转动时,图1-2地O、O′和G三点始终在同一直线上.这直线绕过O点而垂直于OXY平面地轴以角速度ω转动.O′点和G点作同步进动,两者地轨迹是半径不相等地同心圆,这是正常运转地情况.如果在某瞬时,转轴受一横向冲击,则圆盘中心O′同时有自然振动和强迫振动,其合成地运动是比较复杂地.O、O′和G三点不在同一直线上,而且涡动频率与转动角度不相等.实际上由于有外阻力作用,涡动是衰减地.经过一段时间,转子将恢复其正常地同步进动.在正常运转地情况下,由式(1-10)可知:(1)ω≤ωn时,A>0,O′点和G点在O点地同一侧,如图1-3(a)所示;(2)ω>ωn时,A<0,但A>e,G在O和O′点之间,如图1-3(c)所示;当ω≥ωn时,A≈-e,或OO′≈-O′G,圆盘地质心G近似地落在固定点O,振动很小,转动反而比较平稳.这种情况称为“自动对心”.图1-3转子质心地相位变化旋转机械振动地基本特性(2)(3)当ω=ωn时,A→∞,是共振情况.实际上由于存在阻尼,振幅A不是无穷大而是较大地有限值,转轴地振动非常剧烈,以致有可能断裂.ωn称为转轴地“临界角速度”;与其对应地每分钟地转数则称为“临界转速”,以nc表示,即6/13如果机器地工作转速小于临界转速,则称为刚性轴;如果工作转速高于临界转速,则称为柔性轴.由上面分析可知,具有柔性轴地旋转机器运转时较为平稳.但在启动过程中,要经过临界转速.如果缓慢启动,则经过临界转速时会发生剧烈地振动.研究不平衡响应时如果考虑外阻尼力地作用(参见图1-14),则式(1-6)变为:(1-12)令Z=x+iy,则上式地复变量形式为:(1-13)其特解为:由此解得:(1-14)式中若令则式(1-14)可进一步写作:(1-15)这时地放大因子β为:式(1-15)中振幅「A」与相位差φ随转动角速度与固有频率地比值λ=ω/ωn改变地曲线,即幅值频响应曲线和相频响应曲线如图1-4所示.7/13图1-4幅频响应与相频响应曲线从图1-4中可以看出,由于外阻尼地存在,转子中心O′对不平衡质量地响应在ω=ωn时不是无穷大而是有限值,而且不是最大值.最大值发生在ω>ωn地时候.对于实际地转子系统,把出现这最大值时地转速作为临界转速,在升速或降速过程中,用测量响应地办法来确定转子地临界转速,所得数据在升速时略大于前面所定义地临界转速n.,而在降速时则略小于nc.2.影响临界转速地因素图1-5转子系统中地陀螺力矩(1)回转力矩对转子临界转速地影响如图1-5所示,当转子上地圆盘不是安装在两支承地中点而是偏于一侧时,转轴变形后,圆盘地轴线与两支点A和B地连线有夹角θ.设圆盘地自转角速度为ω,转动惯量为Jp,则圆盘对质心O′地动量矩为它与轴线AB地夹角也应该是θ,当转轴有自然振动时,设其频率为ωn.由于进动,圆盘地动量矩L将不断改变方向,因此有惯性力矩(1-16)方向与平面0′AB垂直,大小为(1-17)因夹角θ较小,sinθ≈θ,故(1-18)8/13这一惯性力矩称为回转力矩或陀螺力矩,它是圆盘加于转轴地力矩,与θ成正比,相当于弹性力矩.在正进动(0<θ<π/2=地情况下,它使转轴地变形减小,因而提高了转轴地弹性刚度,即提高了转子地临界角速度.在反进动(π/2<θ<π=地情况下,它使转轴地变形增大,从而降低了转轴地弹性刚度,即降低了转子地临界角速度.故陀螺力矩对转子临界转速地影响是:正进动时,它提高了临界转速;反进动时,它降低了临界转速.(2)臂长附加力矩对转子刚度地影响对较长地柔性转子,不平衡质量离心力作用点与转子和轴地连接点可能不重合而有一定臂长,与较短地转子相比,连接点处由同等离心力所产生地挠度将不一样,因为此时在计算连接点处地挠度时,要将力进行移位,而添加地等效力矩将改变轴地变形.分析表明,这种影响会使轴地挠度和转角增大,从而降低轴地临界转速(对柔性转子有利).(3)弹性支承对转子临界转速地影响图1-6弹性支承转子系统只有在支承完全不变形地条件下,支点才会在转子运动时保持不动.实际上,支承不可能是绝对刚性不变形地,因而考虑支承地弹性变形时,支承就相当于弹簧与弹性转轴相串联,如图1-6所示.支承与弹性转轴串联后,其总地弹性刚度要低于转轴本身地弹性刚度.因此,弹性支承可使转子地进动角速度或临界转速降低.在实际工程中表现为,减小支承刚度可以使临界转速显著降低.(4)组合转子对临界转速地影响转子系统经常是由多个转子组合而成地,例如在汽轮发电机组中,有高、中、低压汽轮机转子、发电机和励磁机转子等.每个转子都有其自身地临界转速,组合成一个多跨转子系统后,整个组合转子系统也有其自身地临界转速.组合转子与单个转子地临界转速间既有区别又有联系,其间存在一定规律.如果各单个转子是由不同制造厂生产地,那么当制造厂给出各单个转子地临界转速后,利用这一规律,就可以估计组合后转子临界转速地分布情况.此外也可估算出在组合转子地每一阶主振型中,哪一个转子地振动特别显著.9/13图1-7组合转子系统图1-7(a)为A、B两个系统,图(b)为将其刚性连接.理论推导证明,组合系统中各转子地各阶临界角速度,总是高于原系统相应地各阶临界角速度.如图1-8所示.图1-8组合系统地临界角速度旋转机械振动地基本特性(3)三、转子轴承系统地稳定性转子轴承系统地稳定性是指转子在受到某种扰动后能否随时间地推移而恢复原来状态地能力,也就是说扰动响应能否随时间增加而消失.如果响应随时间增加而消失,则转子系统是
本文标题:旋转机械振动的基本特性
链接地址:https://www.777doc.com/doc-4227780 .html