您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 垂直平分线的性质课件ppt
木工手工钻ACDBM请同学们在练习本上画出线段AB及其中点M,再过点M画出AB的垂线CD,沿直线CD将纸对折,观察线段MA和MB是否完全重合?结论:线段MA和MB完全重合,因此,线段AB是轴对称图形。问题1:既然线段AB是轴对称图形。那么它的对称轴是什么呢?(直线CD)试验与探索:条线段的垂直平分线ACDBM试验与探索:条线段的垂直平分线问题2:直线CD具有什么特征或特性?CD⊥ABMA=MB即:直线CD垂直并且平分线段AB.定义:垂直并且平分一条线段的直线叫做这条线段的垂直平分线。也称中垂线。如上图,直线CD就是线段AB的垂直平分线你能用不同的方法验证这一结论吗?探索并证明线段垂直平分线的性质如图,直线l垂直平分线段AB,P1,P2,P3,…是l上的点,请猜想点P1,P2,P3,…到点A与点B的距离之间的数量关系.相等.ABlP1P2P3结论:线段垂直平分线上的点与这条线段两个端点的距离相等.已知:如图,直线l⊥AB,垂足为C,AC=CB,点P在l上.求证:PA=PB.探索并证明线段垂直平分线的性质证明:“线段垂直平分线上的点到线段两端点的距离相等.”ABPCl探索并证明线段垂直平分线的性质用几何语言表示为:∵CA=CB,l⊥AB,∴PA=PB.证明:∵l⊥AB,∴∠PCA=∠PCB.又∵AC=CB,PC=PC,∴△PCA≌△PCB(SAS)∴PA=PB.ABPCl线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.已知:如图,直线l⊥AB,垂足为C,AC=CB,点P在l上.求证:PA=PB.8如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于______.ABCDE巩固练习如图所示,在ΔABC中,边BC的垂直平分线MN分别交AB于点M,交BC于点N,ΔBMC的周长为23,且BM=7,求BC的长。CBMNA解:∵MN是线段BC的垂直平分线BM=7∴CM=BM=7∵ΔBMC的周长=23∴BM+CM+BC=23∴BC=23-CM-BM=23-7-7=9巩固练习如图所示,直线MN和DE分别是线段AB、BC的垂直平分线,它们交于点O,试判断线段OA和OC是否相等?请说明理由?NMOEDCBA解:相等,连接OB.∵MN是线段AB的垂直平分线(已知)∴OA=OB(线段中垂线的性质)又∵DE是线段BC的垂直平分线(已知)∴OB=OC(线段中垂线的性质)∴OA=OC(等量代换)巩固练习探索并证明线段垂直平分线的判定反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上呢?点P在线段AB的垂直平分线上.已知:如图,PA=PB.求证:点P在线段AB的垂直平分线上.PABC探索并证明线段垂直平分线的判定证明:如图作PC⊥AB则∠PCA=∠PCB=90°.在Rt△PCA和Rt△PCB中,∵PA=PB,PC=PC,∴Rt△PCA≌Rt△PCB(HL).∴AC=BC.又PC⊥AB,∴点P在线段AB的垂直平分线上PABC已知:如图,PA=PB.求证:点P在线段AB的垂直平分线上.探索并证明线段垂直平分线的判定用几何符号表示为:∵PA=PB,∴点P在AB的垂直平分线上.线段垂直平分线的判定与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.PABC解:∵AB=AC,∴点A在BC的垂直平分线上.∵MB=MC,∵点M在BC的垂直平分线上∴直线AM是线段BC的垂直平分线.如图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?ABCDM巩固练习这些点能组成什么几何图形?探索并证明线段垂直平分线的判定你能再找一些到线段AB两端点的距离相等的点吗?能找到多少个到线段AB两端点距离相等的点?在线段AB的垂直平分线l上的点与A,B的距离都相等;反过来,与A,B的距离相等的点都在直线l上,所以直线l可以看成与两点A、B的距离相等的所有点的集合.ABCMN二、逆定理:到线段两个端点距离相等的点,在这条线段的垂直平分线上。线段的垂直平分线一、性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。PA=PB点P在线段AB的垂直平分线上到线段两个端点距离相等的点,在这条线段的垂直平分线上线段垂直平分线上的点到这条线段两个端点的距离相等三、线段的垂直平分线的集合定义:线段的垂直平分线可以看作是到线段两上端点距离相等的所有点的集合已知:如图ABC中,边AB、BC的垂直平分线相交于点P.求证:PA=PB=PC.∴PA=PB(线段垂直平分线上的点和这条线段两个端点距离相等)证明:∵点P在线段AB的垂直平分线上(已知)同理PB=PC∴PA=PB=PC.ACBMPN巩固练习结论:三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。思考:交点在什么位置?如图,△OBC中,BC的垂直平分线DP交∠BOC的平分线于D,垂足为P.(1)若∠BOC=60゜,求∠BDC的度数;(2)若∠BOC=α,则∠BDC=______(直接写出结果).知识拓展·某区政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等。ABC思考:生活中的数学•某地有两所大学和两条相交叉的公路OA,OB,现计划修建一个物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等,请你确定该点。NMOBA结束语同学们,这节课到这里就结束了,谢谢你们的参与!1.(临沂·中考)正方形ABCD边长为a,点E,F分别是对角线BD上的两点,过点E,F分别作AD,AB的平行线,如图所示,则图中阴影部分的面积之和等于.【解析】运用轴对称、转化的思想,阴影部分面积等于正方形面积的一半,即.答案:21a221a2如何作出线段的垂直平分线?由两点确定一条直线和线段垂直平分线的性质可知,只要作出到线段两端点距离相等的两点并连接即可.点此播放教学视频作线段的垂直平分线.已知:线段AB.求作:线段AB的垂直平分线.ABCD作法:(2)作直线CD.CD即为所求.结论:对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.(1)分别以点A,B为圆心,以大于AB的长为半径作弧,两弧交于C,D两点.122.有A,B,C三个村庄,现准备要建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.ABC【提示】学校在连接任意两点的两条线段的垂直平分线的交点处.5.如图,A,B是路边两个新建小区,要在公路边增设一个公共汽车站.使两个小区到车站的路程一样长,该公共汽车站应建在什么地方?BA【提示】连接AB,作AB的垂直平分线,则与公路的交点就是要建的公共汽车站.1.(临沂·中考)正方形ABCD边长为a,点E,F分别是对角线BD上的两点,过点E,F分别作AD,AB的平行线,如图所示,则图中阴影部分的面积之和等于.【解析】运用轴对称、转化的思想,阴影部分面积等于正方形面积的一半,即.答案:21a221a2高速公路AB在某高速公路L的同侧,有两个工厂A、B,为了便于两厂的工人看病,市政府计划在公路边上修建一所医院,使得两个工厂的工人都没意见,问医院的院址应选在何处?你的方案是什么?生活中的数学L老师期望:养成用数学解释生活的习惯.如图,△ABC中,边AB、BC的垂直平分线交于点P。(1)求证:PA=PB=PC。(2)点P是否也在边AC的垂直平分线上呢?由此你能得出什么结论?APCB结论:三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。如图,已知:AOB,点M、N.求作:一点P,使点P到AOB两边的距离相等,并且满足PM=PN...MNAOB.P点P为所求作的点课堂练习练习4如图,过点P画∠AOB两边的垂线,并和同桌交流你的作图过程.ABOP国旗是国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴。加拿大摩洛哥古巴瑞典以色列巴西例3。如图所示,直线MN和DE分别是线段AB、BC的垂直平分线,它们交于点O,试判断线段OA和OC是否相等?请说明理由?NMOEDCBA解:相等,连接OB.∵MN是线段AB的垂直平分线(已知)∴OA=OB(线段中垂线的性质)又∵DE是线段BC的垂直平分线(已知)∴OB=OC(线段中垂线的性质)∴OA=OC(等量代换)•学习目标:1.理解线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.3.会用尺规经过已知直线外一点作这条直线的垂线,了解作图的道理.•学习重点:线段垂直平分线的性质及尺规经过已知直线外一点作这条直线的垂线.课件说明一、创设情境,温故知新1.前面我们学习了轴对称图形,线段是轴对称图形吗?什么是线段的垂直平分线2.你能找出线段的对称轴吗?3.线段的对称轴与这条线段有什么关系?说明理由.解:∵AD⊥BC,BD=DC∴AD是BC的垂直平分线∴AB=AC∵点C在AE的垂直平分线上∴AC=CE.∴AB=AC=CE课堂练习P622如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB,AC,CE的长度有什么关系?AB+BD与DE有什么关系?ABCDE∵AB=CE,BD=DC,∴AB+BD=CD+CE.即AB+BD=DE.(1)为什么任意取一点K,使点K与点C在直线两旁?尺规作图(P62)如何用尺规作图的方法经过直线外一点作已知直线的垂线?12DE(2)为什么要以大于的长为半径作弧?(3)为什么直线CF就是所求作的垂线?CABDKFE(1)本节课学习了哪些内容?(2)线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系?(3)如何判断一条直线是否是线段的垂直平分线?课堂小结布置作业教科书习题13.1第6、9题.《线段的垂直平分线》四川省盐边县渔门中学谭继林CAI课件探索:在以上试验的基础上,同学们在直线CD上任意取一点E,连接EA,EB,然后沿直线CD将纸折叠,观察线段EA和EB是否完全重合?ACDBME发现:线段EA和EB是能够完全重合的。即EA=EBACDBME线段垂直平分线的性质:线段的垂直平分线上的点到这条线段两个端点的距离相等。若E是线段AB的垂直平分线CD上的一点则EA=EB课堂练习:1。如图,PQ是线段DE、BC的中垂线,BD与CE相等吗?为什么?CQPDEBA2。如图,平面上有三个点A、B、C。你能否找到一个点P,使得PA=PB=PC?BCAP课堂小结:线段垂直平分线的性质及其运用是本节课的重点,应用其性质我们可以证明两条线段相等,也可对线段的长度进行求解。课后议练:1。如图,在ΔABC中,DE是AC的垂直平分线,ΔABC与ΔABD的周长分别为18厘米和12厘米,求线段AE的长。ABDCE2。如图,在ΔABC中,∠BAC=120°,∠C=30°,DE是线段AC的垂直平分线,求∠BAD的度数。EDCBA正方形矩形等边三角形菱形圆等腰梯形对称轴条数3条4条2条1条无数条2条(2)常见图形对称轴的位置长和宽的中垂线两条邻边的中垂线和对角线所在的直线三条边的中垂线对角线直径所在的直线一条底的中垂线所在的直线等腰三角形画出对称轴1条底边的中垂线是不是轴对称图形是是是是是是是复习导入:1。轴对称图形的定义是什么?(如果一个图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么就称这样的图形为轴对称图形)AB例2。如图,BC=BA,MN垂直平分BC,若△ABC周长为28,CA=8,求:△DCA的周长。BCADM解:∵△ABC周长为28,CA=8BC=BAN∴2BA+CA=28∴BA=10∵MN垂直平分BC∴BD=DC∴△DCA的周长=DC+DA+CA=BD+DA+CA=BA+CA=10+8=18ABMNCPMNCABQABMNP.Q.C线段垂直平分线上的点和这条线段两个端点的距离相等.定理线段垂直平分线上的点和这条线段两个端点的距离相等.定理3.已知:如图,AB=AC,A=30o,AB的垂直平分线MN交AC于D,则1=,2=.ABCDMN30o1275o30o60o45oABC
本文标题:垂直平分线的性质课件ppt
链接地址:https://www.777doc.com/doc-4229782 .html