您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高阶线性微分方程解的结构
第十二章高阶线性微分方程解的结构第七节二、线性齐次方程解的结构三、线性非齐次方程解的结构一、线性微分方程的定义第十二章第十二章)()()(22xfyxQdxdyxPdxyd时,当0)(xf二阶线性齐次微分方程时,当0)(xf二阶线性非齐次微分方程n阶线性微分方程).()()()(1)1(1)(xfyxPyxPyxPynnnn一、二阶线性微分方程复习:一阶线性方程)()(xQyxPy通解:xexQexxPxxPd)(d)(d)(xxPeCyd)(非齐次方程特解齐次方程通解Y第十二章])[(11yCxP][)(11yCxQ0证毕二、线性齐次方程解的结构)(),(21xyxy若函数是二阶线性齐次方程0)()(yxQyxPy的两个解,也是该方程的解.证:)()(2211xyCxyCy将代入方程左边,得][11yC22yC22yC22yC])()([1111yxQyxPyC])()([2222yxQyxPyC(叠加原理))()(2211xyCxyCy则定理1.第十二章说明:不一定是所给二阶方程的通解.例如,是某二阶齐次方程的解,也是齐次方程的解并不是通解但是)()(2211xyCxyCy则为解决通解的判别问题,下面引入函数的线性相关与线性无关概念.第十二章定义:)(,),(),(21xyxyxyn设是定义在区间I上的n个函数,使得则称这n个函数在I上线性相关,否则称为线性无关.例如,在(,)上都有故它们在任何区间I上都线性相关;又如,若在某区间I上则根据二次多项式至多只有两个零点,必需全为0,可见在任何区间I上都线性无关.若存在不全为0的常数第十二章两个非零函数在区间I上线性相关与线性无关的充要条件:线性相关存在不全为0的使1221)()(kkxyxy(无妨设)01k线性无关)()(21xyxy常数思考:中有一个恒为0,则必线性相关第十二章定理2.是二阶线性齐次方程的两个线性无关特解,则)()(2211xyCxyCy数)是该方程的通解.例如,方程有特解且常数,故方程的通解为(自证)推论.是n阶齐次方程的n个线性无关解,则方程的通解为)(11为任意常数knnCyCyCyxytan21y第十二章三、线性非齐次方程解的结构)(*xy设是二阶非齐次方程的一个特解,)(*)(xyxYyY(x)是相应齐次方程的通解,定理3.则是非齐次方程的通解.证:将)(*)(xyxYy代入方程①左端,得)*(yY)*()(yYxP))()((YxQYxPY)(0)(xfxf)*()(yYxQ②①第十二章)(*)(xyxYy故是非齐次方程的解,又Y中含有两个独立任意常数,例如,方程有特解xCxCYsincos21对应齐次方程有通解因此该方程的通解为证毕因而②也是通解.第十二章定理4.分别是方程的特解,是方程),,2,1()()()(nkxfyxQyxPyk)()()(1xfyxQyxPynkk的特解.(非齐次方程之解的叠加原理)定理3,定理4均可推广到n阶线性非齐次方程.第十二章定理5.是对应齐次方程的n个线性无关特解,给定n阶非齐次线性方程)()(xyxY是非齐次方程的特解,则非齐次方程的通解为齐次方程通解非齐次方程特解第十二章常数,则该方程的通解是().设线性无关函数都是二阶非齐次线性方程)()()(xfyxQyxPy的解,21,CC是任意;)()(3212211yCCyCyCB;)1()(3212211yCCyCyCCD例3.提示:3231,yyyy都是对应齐次方程的解,二者线性无关.(反证法可证)第十二章例4.已知微分方程)()()(xfyxqyxpy个解,,,2321xxeyeyxy求此方程满足初始条件3)0(,1)0(yy的特解.解:1312yyyy与是对应齐次方程的解,且xexeyyyyxx21312常数因而线性无关,故原方程通解为)()(221xeCxeCyxx代入初始条件,3)0(,1)0(yy,2,121CC得.22xxeey故所求特解为有三第十二章补充内容可观察出一个特解0)()(yxQyxPy,0)()()1(xxQxP若;xy特解,0)()(1)2(xQxP若;xey特解,0)()(1)3(xQxP若.xey特解第十二章思考与练习P331题1,3,4(2),(5)
本文标题:高阶线性微分方程解的结构
链接地址:https://www.777doc.com/doc-4235284 .html