您好,欢迎访问三七文档
高等数学微积分公式大全一、基本导数公式⑴()⑵0c′=1xxμμμ−=⑶()sincosxx′=⑷()cossinxx′=−⑸()2tansecxx′=⑹()2cotcscxx′=−⑺()secsectanxx′=⋅x⑻()csccsccotxxx′=−⋅⑼()xxe′=ea⑽()⑾()lnxxaa′=1lnxx′=⑿()1loglnxaxa′=⒀()21arcsin1xx′=−⒁()21arccos1xx′=−−⒂()21arctan1xx′=+⒃()21arccot1xx′=−+⒄()1x′=⒅()12xx′=二、导数的四则运算法则()uvuv′′±=±′′()uvuvuv′′=+2uuvuvv′v′′−⎛⎞=⎜⎟⎝⎠三、高阶导数的运算法则(1)()()()()()()()nnuxvxuxvx±=±⎡⎤⎣⎦n(2)()()()()nncuxcux=⎡⎤⎣⎦(3)()()()(nnnuaxbauaxb+=+⎡⎤⎣⎦)(4)()()()()()()()0nnnkkknkuxvxcuxvx−=⋅=⎡⎤⎣⎦∑四、基本初等函数的n阶导数公式(1)()()!nnxn=(2)()()naxbnaxbeae++=⋅(3)()()lnnxxaa=na(4)()()sinsin2nnaxbaaxbnπ⎛⎞+=++⋅⎡⎤⎜⎟⎣⎦⎝⎠(5)()()coscos2nnaxbaaxbnπ⎛⎞+=++⎡⎤⎜⎟⎣⎦⎝⎠⋅(6)()()()11!1nnnnanaxbaxb+⋅⎛⎞=−⎜⎟+⎝⎠+(7)()()()()()11!ln1nnnnanaxbaxb−⋅−+=−⎡⎤⎣⎦+五、微分公式与微分运算法则⑴⑵⑶()0dc=()1dxxdxμμμ−=()sincosdxxd=xxx⑷⑸⑹()cossindxxd=−()2tansecdxxd=()2cotcscdxxd=−xx⑺⑻()secsectandxxxd=⋅()csccsccotdxxxd=−⋅x⑼⑽⑾()xxdeedx=()lnxxdaaadx=()1lndxdxx=⑿()1loglnxaddxxa=()⒀21arcsin1dxx=−dx⒁()21arccos1dxx=−−dx⒂()21arctan1dxdxx=+⒃()21arccot1dxdxx=−+六、微分运算法则⑴⑵()duvdudv±=±()dcucdu=⑶⑷()duvvduudv=+2uvduudvdvv−⎛⎞=⎜⎟⎝⎠七、基本积分公式⑴⑵kdxkxc=+∫11xxdxcμμμ+=++∫⑶lndxxcx=+∫⑷lnxxaadxca=+∫⑸xxedxec=+∫⑹cossinxdxxc=+∫⑺sincosxdxxc=−+∫⑻221sectancosdxxdxxcx==+∫∫⑼221csccotsinxdxxcx==−∫∫+⑽21arctan1dxxcx=++∫⑾21arcsin1dxxcx=+−∫八、补充积分公式tanlncosxdxxc=−+∫cotlnsinxdxxc=+∫seclnsectanxdxxxc=+∫+csclncsccotxdxxxc=−+∫2211arctanxdxcaxaa=+∫+2211ln2xadxcxaaxa−=+−+∫221arcsinxdxcaax=−∫+22221lndxxxacxa=+±+±∫九、下列常用凑微分公式积分型换元公式()()(1)faxbdxfaxbdaxba+=++∫∫uaxb=+()()()11fxxdxfxdxμμμμ−=∫∫μuxμ=()()()1lnlnlnfxdxfxdxx⋅=∫∫lnux=()()()xxxxfeedxfede⋅=∫∫xue=()()()1lnxxxxfaadxfadaa⋅=∫∫xua=()()()sincossinsinfxxdxfxd⋅=∫∫xsinux=cosux=()()()cossincoscosfxxdxfxd⋅=−∫∫xtanux=()()()2tansectantanfxxdxfxd⋅=∫∫x()()()2cotcsccotcotfxxdxfxd⋅=∫∫xcotux=()()()21arctanarcnarcn1fxdxftaxdtaxx⋅=+∫∫arctanux=()()()21arcsinarcsinarcsin1fxdxfxdx⋅=−∫∫arcsinux=x十、分部积分法公式⑴形如naxxedx∫,令,nux=axdvedx=形如sinnxxdx∫令,nux=sindvxdx=形如cosnxxdx∫令,nux=cosdvxdx=⑵形如arctannxxdx∫,令,arctanux=ndvxdx=形如lnnxxdx∫,令,lnux=ndvxdx=⑶形如,令ue均可。sinaxexdx∫cosaxexd∫,sin,cosaxxx=x十一、第二换元积分法中的三角换元公式(1)22ax−sinxa=t(2)22ax+tanxat=(3)22xa−secxat=【特殊角的三角函数值】(1)(2)sin00=1sin62π=(3)3sin32π=(4)sin12π=)(5)sin0π=(1)(2)cos01=3cos62π=(3)1cos32π=(4)cos02π=)(5)cos1π=−(1)(2)tan00=3tan63π=(3)tan33π=(4)tan2π不存在(5)tan0π=(1)不存在(2)cot0cot36π=(3)3cot33π=(4)cot02π=(5)cotπ不存在十二、重要公式(1)0sinlim1xxx→=(2)()10lim1xxxe→+=(3)lim()1nnaao→∞=(4)lim1nnn→∞=(5)limarctan2xxπ→∞=(6)limtan2xarcxπ→−∞=−(7)(8)limarccot0xx→∞=limarccotxxπ→−∞=(9)lim0xxe→−∞=(10)(11)limxxe→+∞=∞0lim1xxx+→=(12)00101101lim0nnnmmxmanmbaxaxanmbxbxbnm−−→∞⎧=⎪⎪+++⎪=⎨+++⎪∞⎪⎪⎩LL(系数不为0的情况)十三、下列常用等价无穷小关系(0x→)sinxxtanxxarcsinxxarctanxx211cos2xx−()ln1xx+1xe−xa1lnxax−()11xx∂+−∂十四、三角函数公式1.两角和公式sin()sincoscossinABABA+=+Bsin()sincoscossinABABAB−=−cos()coscossinsinABABA+=−Bcos()coscossinsinABABAB−=+tantantan()1tantanABABAB++=−tantantan()1tantanABABAB−−=+cotcot1cot()cotcotABABBA⋅−+=+cotcot1cot()cotcotABABBA⋅+−=−2.二倍角公式sin22sincosAA=A2222cos2cossin12sin2cos1AAAAA=−=−=−22tantan21tanAAA=−3.半角公式1cossin22AA−=1coscos22AA+=1cossintan21cos1cosAAAAA−==++1cossincot21cos1cosAAAAA+==−−4.和差化积公式sinsin2sincos22ababab+−+=⋅sinsin2cossin22ababab+−−=⋅coscos2coscos22ababab+−+=⋅coscos2sinsin22ababab+−−=−⋅()sintantancoscosababab++=⋅5.积化和差公式()()1sinsincoscos2ababab=−+−−⎡⎤⎣⎦()()1coscoscoscos2ababab=++−⎡⎤⎣⎦()()1sincossinsin2ababab=++−⎡⎤⎣⎦()()1cossinsinsin2ababab=+−−⎡⎤⎣⎦6.万能公式22tan2sin1tan2aaa=+221tan2cos1tan2aaa−=+22tan2tan1tan2aaa=−7.平方关系22sincos1xx+=22secn1xtax−=22csccot1xx−=8.倒数关系tancot1xx⋅=seccos1xx⋅=csin1csxx⋅=9.商数关系sintancosxxx=coscotsinxxx=十五、几种常见的微分方程1.可分离变量的微分方程:()()dyfxgydx=,()()()()11220fxgydxfxgydy+=2.齐次微分方程:dyyfdxx⎛⎞=⎜⎟⎝⎠3.一阶线性非齐次微分方程:()()dypxyQxdx+=解为:()()()pxdxpxdxyeQxedxc−⎡∫∫=⎢⎣⎦∫⎤+⎥
本文标题:微积分公式大全
链接地址:https://www.777doc.com/doc-4238044 .html