您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 有关养牛的农场规划问题-数学建模
1【摘要】本题探究的是如何对农场5年的生产计划作出决策,我们将运用目标优化模型进行求解。据题意可知第j年卖0岁母牛的数量Nj(Af=0),第j年种地的亩数Sj(在解题时,我们以买卖饲料的数量以及养牛需要的饲料数量来决定),以及贷款的总额M为三个主要的决策变量。其中第j年卖0岁母牛的数量Nj(Af=0)会影响每一年牛的总数进而影响种地的亩数,同时也会影响农场主的贷款额。所以,本题我们将以第j年牛的总头数Nj,年收入Wj,,年成本Cj作为对象,并以5年的总收益的最大值Z作为目标函数进行讨论。为得到五年的净收益总和,我们将用每年的收入Wj减去每年的成本Cj得到每年的净收益并求和来得到。对于成本中牛的数量超过130时的额外投资费用,我们用年初出生的小母牛的头数减去年初卖掉的小母牛的头数乘以2000来得到;在决定贷款额时,我们首先对每年除去还款额后的净收益进行粗略计算得到每一年都是可以盈利的,所以我们将使用第一年的成本Cj作为贷款总额。最后,运用lingo软件对决策变量进行规划得到的结果。我们通过求解得到5年的总收益的最大值Z=686625.6,贷款总额M=416055.8,种粮食亩数S1=80,种甜菜亩数S2=120,各年卖出的0岁母牛头数分别为48,0,15,60,90。其他因素的变化对计划造成的影响,其中银行利率r的变化会对总收益M造成影响,但对其他决策变量影响较小;另外,如果农产品价格和产量以及劳动力价格发生变化,将有可能改变种农产品的亩数和购买农产品的数量,贷款额M和相应的总收益Z的变化,各因素的具体影响我们方式将在模型解答中加以阐述。【关键词】优化模型贷款总额M卖掉的0岁母牛的头数买、卖的饲料吨数种植饲料的土地面积lingo软件2一、问题重述某公司计划承包有200亩土地的农场,建立奶牛场。开始承包时农场有120头母牛,其中20头为不到0~1岁的幼牛,100头为产奶牛。产奶牛平均每头每年生0.55头公牛,生出后不久即以每头300元卖掉;产奶牛平均每头每年生0.05头的母牛要么出生后以400元卖掉,要么饲养,养至2岁成为产奶牛。幼牛年损失5%;产奶牛年损失2%。产奶牛满12岁就以每头1200元卖掉。这120头牛中从0岁到11岁每个年龄阶段各有10头。应该卖掉的小母牛都已卖掉。只有20头是要饲养成产奶牛的。一头牛产奶年收入为3700元。现在农场最多只能养130头牛。超过此数每多养一头,要投资2000元。每头产奶牛每年消耗0.6吨粮食和0.7吨甜菜。每头小牛每年消耗粮食和甜菜量为奶牛的2/3。粮食和甜菜可以自己种植,每亩产甜菜1.5吨。只有80亩的土地适于种粮食,产量平均0.9吨。从市场购粮食每吨900元,卖出750元。买甜菜每吨700元,卖出500元。养牛和种植所需的劳动量为:每头小牛每年10小时;每头产奶牛每年42小时;种一亩粮食每年需20小时;种一亩甜菜每年需30小时。其它费用:每头幼牛每年500元,产奶牛每头每年1000元;种粮食每亩每年150元,种甜菜每亩每年100元。劳动力成本为每小时费用为10元承包农场需要一笔费用,其中租地费用为每年6万元(每年底付清),以及开始承包时农场已有的120头牛的费用。平均产奶牛每头4000元,小牛每头400元,到承包结束时,农场的牛按此价折价抵卖。该公司资金全部来自银行贷款,复利计息,每年归还本利和的1/5。五年还清。此外,农场主不希望产奶牛的数目在五年末与现在相比减少超过50%,也不希望增加超过75%。现在要求分析承包人有无盈利的可能性。若有,应如何安排5年的生产,使得五年的净收益为最大,并以此为基础进一步讨论,若遇到银行利率波动(例如上下波动2个百分点),还贷方式改变(如规定每年还息,改变还本的方式),由于气候等外因变化引起的农产品产量与价格的变化及劳动力市场价格的变动等将会对农场主的五年生产计划及收益产生怎样的影响。3二、问题分析对于问题一:本题要求分析农场主5年后能否盈利,并制定5年的生产计划设法使净收益最大,我们认为这是一个研究资源的合理配置和优化问题。由题意可知,农场的收入来源有卖牛奶的收入,卖牛的收入,以及卖出多余的粮食的收入,同时成本来源包括雇佣劳动力产生的费用,地租,养牛成本(养牛总数高出130头时追加的投资费,饲料费,照顾费等),还贷款以及其他一些费用。由于题中所给的资料均以年为单位,因此,可以通过得出年收益的通项并求和就可得到5年的总收益。经分析,我们可以知道,要想规划每年的生产计划就必须要对每年卖牛的数量,种地的亩数(在解题时,我们以买卖饲料的数量以及养牛需要的饲料数量来决定),以及贷款的总额做出决策。由此可见,其中最为总要的是卖牛的数量,因为它会影响一年牛的总数进而影响种地的亩数,同时也会影响农场主的贷款额。本题我们将以牛的头数以及总收益作为主要的建模对象,来对问题进行分析和阐述。对于问题二:银行利率等贷款方式的波动会在一定程度上影响贷款的额度,如果实际利率高,将考虑精简贷款额度,反之,可能适当提高贷款额度以获得更高收益;农产品价格和产量的变化可能导致在考虑种植不同种饲料(粮食和甜菜)的亩数的决策上有所影响;最后,劳动力市场的价格变化可能对不同的牛(12岁母牛,0岁母牛)的养殖数目,种植饲料的亩数,以及间接地对贷款额造成一定影响。此题我们将结合模型中利率,农产品产量和价格,及劳动力价格这几个变量来进行分析。三、模型假设1、幼牛出生发生在年初,损失发生在年末。2、刚出生的小牛无损失,即刚出生就卖掉,12岁的老母牛在年末被卖掉。3、幼牛损失的各年龄和奶牛损失的各年龄是均匀的。4、银行按照复利计息,即农场每年归还1/5(1+r)^5M5、相邻两个年龄组的牛在相邻两年之间的变化是连续的。6、在5年末12岁的牛被以4000的价格收购。7、粮食是在每年末才能成熟并收割,即第一年的牛的全部饲料都从市场上购买,以后每年的牛吃上一年种的粮食,不够的再到市场上购买。8、年底才能拿到所有的收入,而支出发生在年初。9、不会卖一岁的母牛4四、符号说明1、Wj第j年总收益,Wkj卖奶收益,Wcj卖牛收益,Wqj卖粮食收益2、Nj是第j年初母牛的总数量,Nij是第j年初第i岁母牛的数量,F1j第j年初成年母牛总数,F2j第j年初未成年母牛总数3、Nj(A=12)卖出12岁母牛总数,Nj(Am=0)卖出公牛总数,Nj(Af=0)卖出幼年母牛总数4、Clj劳动力花费,Csj养牛花费,Rsj地租,Cbj贷款本利和,Caj为第j年牛的头数超过130头时的额外投资,Cj为第j年末总花费5、Pl为劳动力单位时间费用,Pr1为粮食卖出价格,Pr2为粮食买入价格,Ps1为甜菜卖出价格,Ps2为甜菜买入价格6、Wrj是卖粮食重量,Wsj是卖甜菜的重量,Wmj是购买粮食的重量,Wej是购买甜菜的重量7、S1j是第j年种植粮食的面积S2j是第j年种植甜菜的面积8、O1为每亩粮食产量,O2为每亩甜菜产量9、W3j是第j年需要的粮食吨数,W4j是第j年需要的甜菜吨数10、ΔW5第五年当年净收益,Z为5年的最大净收益11、M为贷款总额,利率r5五、模型的建立(一)目标函数:541)(maxWCWZjij,M=C1(二)约束条件:11515250*98%*95%175iiNN00jN129.5N1080jS20jS210200jjSS0)(541WCWjij我们将贷款总额M,卖掉的0岁母牛的头数Nj(Af=0),卖掉的粮食吨数Wrj,卖掉的甜菜吨数Wsj,买入的粮食吨数Wmj,买入的甜菜吨数Wej,六个变量作为决策变量,并用(W3j+1+Wsj—Wmj)/O1表示种植粮食的土地面积S1j,用(Wsj+W4j+1—Wej)/O2表示种植甜菜的土地面积S2j,则(1)1~4年末收益:卖奶收益Wkj=F1j*3700卖牛收益Wcj=Nj(A=12)*1200+Nj(Am=0)*300+Nj(Af=0)*400卖粮食和甜菜的收益Wqj=Wrj*Pr1+Wsj*Ps1总收益Wj=Wkj+Wcj+Wqj=F1j*3700+Nj(A=12)*1200+Nj(Am=0)*300+Nj(Af=0)*400+Wrj*750+Wsj*5001~4年末花费:劳动力花费Clj=(F1j*42+F2j*10+S1j*20+S2j*30)*P1养牛花费Csj=F1j*1000+F2j*500+Wmj*Pr2+Wej*Ps2地租Rsj=60000+S1j*150+S2j*100贷款本利和Cbj=1/5[M*(1+r)^5]r=12%(年利率)超过130头年的额外投资2000*))0(55.0*(112fjiijajANNC2=j=5第一年超过130头牛的额外投资62000*)130120)0(55.0*(111211fiiaANNC总花费Cj=Clj+Csj+Rsj+Cbj+Caj注:W3j=(F1j+F2j*2/3)*0.6,W4j=(F1j+F2j*2/3)*0.7)(2)第五年净收益52200*[*500(10030*)]lWOP105152(*98%*95%)*4000iiNN111111455222*98%*1.1/2*(300400)*3700iiiiiiNNN15r20*1000*50060000*PimjiNW2*1/5[*(1)^5]ejsWPMr111011122*98%*95%ijijjiiNNN11012*1.1/2*98%(0)jijjfiNNNA101*95%jjNN(2~11岁成年母牛总数)1112jijiFN,201jjjFNN(12岁母牛总数)Nj(A=12)=N11j-1*98%Nj(Am=0)=1112*1.1/2*98%ijiNNj(Am=0)是卖的0岁公牛总数F11=100,F21=20+,Wr1=0,Ws1=0,Wm1=68,We1=80,r=12%,Pl=10,O1=0.9,O2=1.5,Pr1=900,Pr2=750,Ps1=700,Ps2=500,N1(Am=0)=55,N1(Af=12)=9.87六、模型求解(一)问题一的求解为简化模型,我们增设以下假设:假设一:前四年每一年都种80亩粮食,120亩甜菜,第五年种200亩甜菜。理由:我们从运行结果上可以看到第二年的牛的总头数已经超过了130,经计算,当农场里恰好有100头成年母牛,30头未成年母牛时,农场中80亩地种植的粮食恰好够吃,且种粮食比买粮食更便宜,并且种植甜菜和粮食都能够获得收益。所以,在用程序进行计算时,我们对种植粮食做了规划,200亩地全部种完,由于粮食最多只能种80亩,所以,前4年80亩地种粮食,120亩地种甜菜;由于第五年吃的粮食来源于第四年的收成,而第5年的粮食到年底才有收成,由于甜菜每亩的收益比粮食大,所以第五年200亩的土地全部中甜菜。假设二:不购买甜菜理由:经计算,甜菜足够支撑起在题目范围内的母牛的增长率假设三:第一年的总成本C1等于贷款总额M理由:因为经过估算,几乎每一年都可以得到正的净收益,并且,由于第一年的资金比较充裕至少会大于第一年的支出,因为年底才会有收成,所以,第一年的净收益就等于第一年的收入W1,会比较大足矣垫付之后每一年的亏损,所以,为达到支出最小化,我们只借相当于第一年的总成本额度的贷款。假设四:小母牛在年初产下理由:由于年初生牛和年末生牛的计算结果相差不大,为方便模型计算,设置在年初生牛。将已知数代入lingo,运行结果如下:Globaloptimalsolutionfound.Objectivevalue:751029.9Objectivebound:751029.9Infeasibilities:0.7331380E-10Extendedsolversteps:0Totalsolveriterations:108VariableValueReducedCostZ12139.1060.000000Z2126925.
本文标题:有关养牛的农场规划问题-数学建模
链接地址:https://www.777doc.com/doc-4238702 .html