您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 等差等比数列的性质练习题
1等差数列的性质1、已知为等差数列,且-2=-1,=0,则公差d=(A)-2(B)-(C)(D)22、等差数列{an}中,a1=1,a3+a5=14,其前n项和Sn=100,则n=A.9B.10C.11D.123、等差数列na的前n项和为xS若=则432,3,1SaaA.12B.10C.8D.64、设是等差数列的前n项和,已知,,则等于A.13B.35C.49D.635、设ns为等比数列{}na的前n项和,2580aa则52SS(A)-11(B)-8(C)5(D)116、如果等差数列中,,那么(A)14(B)21(C)28(D)357、在等差数列na中,1910aa,则5a的值为(A)5(B)6[(C)8(D)108、设等差数列的前项和为,若则(A)7(B)8[(C)9(D)119、已知数列{na}的前n项和29nSnn,第k项满足58ka,则kA.9B.8C.7D.610、.设Sn是等差数列{an}的前n项和,若S3S6=13,则S6S12=(A)310(B)13(C)18(D)1911、已知为等差数列,++=105,=99,以表示的前项和,则使得达到最大值的是(A)21(B)20(C)19(D)1812、等差数列的前n项和为,已知,,则na7a4a3a1212nSna23a611a7Sna34512aaa127...aaanannS535aa95SSna1a3a5a246aaanSnannSnnanS2110mmmaaa2138mSm2(A)38(B)20(C)10(D)913、已知na是等差数列,466aa,其前5项和510S,则其公差d14、等差数列的前项和为,且则15、已知等差数列na的前n项和为nS,若1221S,则25811aaaa16、设nS为等差数列{}na的前n项和,若36324SS,,则9a。17、若na为等差数列,2a,10a是方程0532xx的两根,则75aa____________18、等差数列na的前n项和为ns,若1845aa,则8s等于19、在等差数列{an}中,a5=3,a6=-2,则a4+a5+…+a10=20、在x和y之间插入n个实数,使它们与xy,成等差数列,则此数列的公差为等比数列性质已知等比数列的公比为正数,且·=2,=1,则=A.B.C.D.22.如果1,,,,9abc成等比数列,那么()A、3,9bacB、3,9bacC、3,9bacD、3,9bac3、若数列na的通项公式是1210(1)(32),nnanaaa则(A)15(B)12(C)D)4.在等比数列{an}中,a2=8,a5=64,,则公比q为()A.2B.3C.4D.85..若等比数列{an}满足anan+1=16n,则公比为A.2B.4C.8D.166.若互不相等的实数成等差数列,成等比数列,且,则A.4B.2C.-2D.-47.公比为32等比数列{}na的各项都是正数,且31116aa,则162loga=()A.4B.5C.D.8.在等比数列中,,则()A.B.C.或D.-或-9.等比数列中,已知,则的值为()A.16B.24C.48D.128nannS53655,SS4a}{na3a9a25a2a1a21222,,abc,,cab310abcana5,6144117aaaa1020aa322332233223{}na121264aaa46aa310.实数依次成等比数列,其中1a=2,5a=8,则3a的值为()A.-4B.4C.±4D.511.等比数列的各项均为正数,且=18,则=A.12B.10C.8D.2+12.设函数*2,311Nnxnxxf的最小值为na,最大值为nb,则2nnnncbab是()A.公差不为零的等差数列B.公比不为1的等比数列C.常数列D.既不是等差数列也不是等比数列13.三个数cba,,成等比数列,且0,mmcba,则b的取值范围是()A.3,0mB.3,mmC.3,0mD.3,00,mm14.已知等差数列的公差,且成等比数列,则的值为.15.已知1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则______.16.已知nna312,把数列}{na的各项排成三角形状:987654321,,,,,,aaaaaaaaa记nmA,表示第m行,第n列的项,则8,10A=_______.12345,,,,aaaaana5647aaaa3132310logloglogaaa3log5}{na0d931,,aaa1042931aaaaaa221baa
本文标题:等差等比数列的性质练习题
链接地址:https://www.777doc.com/doc-4240098 .html