您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 高考数学三角函数练习题及答案解析
高考数学三角函数练习题及答案解析(2010上海文数)19.(本题满分12分)已知02x,化简:2lg(costan12sin)lg[2cos()]lg(1sin2)22xxxxx.解析:原式lg(sinxcosx)lg(cosxsinx)lg(sinxcosx)20.(2010湖南文数)16.(本小题满分12分)已知函数2()sin22sinfxxx(I)求函数()fx的最小正周期。(II)求函数()fx的最大值及()fx取最大值时x的集合。(2010浙江理数)(18)(本题满分l4分)在△ABC中,角A、B、C所对的边分别为a,b,c,已知1cos24C(I)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.解析:本题主要考察三角变换、正弦定理、余弦定理等基础知识,同事考查运算求解能力。(Ⅰ)解:因为cos2C=1-2sin2C=14,及0<C<π所以sinC=104.(Ⅱ)解:当a=2,2sinA=sinC时,由正弦定理acsinAsinC,得c=4由cos2C=2cos2C-1=14,J及0<C<π得cosC=±64由余弦定理c2=a2+b2-2abcosC,得b2±6b-12=0解得b=6或26所以b=6b=6c=4或c=4(2010全国卷2理数)(17)(本小题满分10分)ABC中,D为边BC上的一点,33BD,5sin13B,3cos5ADC,求AD.【命题意图】本试题主要考查同角三角函数关系、两角和差公式和正弦定理在解三角形中的应用,考查考生对基础知识、基本技能的掌握情况.【参考答案】由cos∠ADC=>0,知B<.由已知得cosB=,sin∠ADC=.从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB==.由正弦定理得,所以=.【点评】三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现.这类题型难度比较低,一般出现在17或18题,属于送分题,估计以后这类题型仍会保留,不会有太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.(2010陕西文数)17.(本小题满分12分)在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.解在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos2222ADDCACADDC=10036196121062,ADC=120°,ADB=60°在△ABD中,AD=10,B=45°,ADB=60°,由正弦定理得sinsinABADADBB,AB=310sin10sin60256sinsin4522ADADBB.(2010辽宁文数)(17)(本小题满分12分)在ABC中,abc、、分别为内角ABC、、的对边,且2sin(2)sin(2)sinaAbcBcbC(Ⅰ)求A的大小;(Ⅱ)若sinsin1BC,试判断ABC的形状.解:(Ⅰ)由已知,根据正弦定理得cbcbcba)2()2(22即bccba222由余弦定理得Abccbacos2222故120,21cosAA(Ⅱ)由(Ⅰ)得.sinsinsinsinsin222CBCBA又1sinsinCB,得21sinsinCB因为900,900CB,故BC所以ABC是等腰的钝角三角形。(2010辽宁理数)(17)(本小题满分12分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2sin(2)sin(2)sin.aAacBcbC(Ⅰ)求A的大小;(Ⅱ)求sinsinBC的最大值.解:(Ⅰ)由已知,根据正弦定理得22(2)(2)abcbcbc即222abcbc由余弦定理得2222cosabcbcA故1cos2A,A=120°……6分(Ⅱ)由(Ⅰ)得:sinsinsinsin(60)BCBB31cossin22sin(60)BBB故当B=30°时,sinB+sinC取得最大值1。……12分(2010全国卷2文数)(17)(本小题满分10分)ABC中,D为边BC上的一点,33BD,5sin13B,3cos5ADC,求AD。【解析】本题考查了同角三角函数的关系、正弦定理与余弦定理的基础知识。由ADC与B的差求出BAD,根据同角关系及差角公式求出BAD的正弦,在三角形ABD中,由正弦定理可求得AD。(2010江西理数)17.(本小题满分12分)已知函数21cotsinsinsin44fxxxmxx。(1)当m=0时,求fx在区间384,上的取值范围;(2)当tan2a时,35fa,求m的值。【解析】考查三角函数的化简、三角函数的图像和性质、已知三角函数值求值问题。依托三角函数化简,考查函数值域,作为基本的知识交汇问题,考查基本三角函数变换,属于中等题.解:(1)当m=0时,22cos1cos2sin2()(1)sinsinsincossin2xxxfxxxxxx1[2sin(2)1]24x,由已知3[,]84x,得22[,1]42x从而得:()fx的值域为12[0,]2(2)2cos()(1)sinsin()sin()sin44xfxxmxxx化简得:11()[sin2(1)cos2]22fxxmx当tan2,得:2222sincos2tan4sin2sincos1tan5aaaaaaa,3cos25a,代入上式,m=-2.(2010安徽文数)16、(本小题满分12分)ABC的面积是30,内角,,ABC所对边长分别为,,abc,12cos13A。(Ⅰ)求ABAC;(Ⅱ)若1cb,求a的值。【命题意图】本题考查同角三角函数的基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.【解题指导】(1)根据同角三角函数关系,由12cos13A得sinA的值,再根据ABC面积公式得156bc;直接求数量积ABAC.由余弦定理2222cosabcbcA,代入已知条件1cb,及156bc求a的值.解:由12cos13A,得2125sin1()1313A.又1sin302bcA,∴156bc.(Ⅰ)12cos15614413ABACbcA.(Ⅱ)2222cosabcbcA212()2(1cos)12156(1)2513cbbcA,∴5a.【规律总结】根据本题所给的条件及所要求的结论可知,需求bc的值,考虑已知ABC的面积是30,12cos13A,所以先求sinA的值,然后根据三角形面积公式得bc的值.第二问中求a的值,根据第一问中的结论可知,直接利用余弦定理即可.(2010重庆文数)(18).(本小题满分13分),(Ⅰ)小问5分,(Ⅱ)小问8分.)设ABC的内角A、B、C的对边长分别为a、b、c,且32b+32c-32a=42bc.(Ⅰ)求sinA的值;(Ⅱ)求2sin()sin()441cos2ABCA的值.(2010浙江文数)(18)(本题满分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足2223()4Sabc。(Ⅰ)求角C的大小;(Ⅱ)求sinsinAB的最大值。(2010重庆理数)(16)(本小题满分13分,(I)小问7分,(II)小问6分)设函数22cos2cos,32xfxxxR。(I)求fx的值域;(II)记ABC的内角A、B、C的对边长分别为a,b,c,若fB=1,b=1,c=3,求a的值。(2010山东文数)(17)(本小题满分12分)已知函数2()sin()coscosfxxxx(0)的最小正周期为,(Ⅰ)求的值;(Ⅱ)将函数()yfx的图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数()ygx的图像,求函数()ygx在区间0,16上的最小值.(2010北京文数)(15)(本小题共13分)已知函数2()2cos2sinfxxx(Ⅰ)求()3f的值;(Ⅱ)求()fx的最大值和最小值解:(Ⅰ)22()2cossin333f=31144(Ⅱ)22()2(2cos1)(1cos)fxxx23cos1,xxR因为cos1,1x,所以,当cos1x时()fx取最大值2;当cos0x时,()fx去最小值-1。(2010北京理数)(15)(本小题共13分)已知函数(x)f22cos2sin4cosxxx。(Ⅰ)求()3f的值;(Ⅱ)求(x)f的最大值和最小值。解:(I)2239()2cossin4cos1333344f(II)22()2(2cos1)(1cos)4cosfxxxx=23cos4cos1xx=2273(cos)33x,xR因为cosx[1,1],所以,当cos1x时,()fx取最大值6;当2cos3x时,()fx取最小值73(2010四川理数)(19)(本小题满分12分)(Ⅰ)○1证明两角和的余弦公式C:cos()coscossinsin;○2由C推导两角和的正弦公式S:sin()sincoscossin.(Ⅱ)已知△ABC的面积1,32SABAC,且35cosB,求cosC.本小题主要考察两角和的正、余弦公式、诱导公式、同角三角函数间的关系等基础知识及运算能力。解:(1)①如图,在执教坐标系xOy内做单位圆O,并作出角α、β与-β,使角α的始边为Ox,交⊙O于点P1,终边交⊙O于P2;角β的始边为OP2,终边交⊙O于P3;角-β的始边为OP1,终边交⊙O于P4.则P1(1,0),P2(cosα,sinα)P3(cos(α+β),sin(α+β)),P4(cos(-β),sin(-β))由P1P3=P2P4及两点间的距离公式,得[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2展开并整理得:2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ)∴cos(α+β)=cosαcosβ-sinαsinβ.……………………4分②由①易得cos(2-α)=sinα,sin(2-α)=cosαsin(α+β)=cos[2-(α+β)]=cos[(2-α)+(-β)]=cos(2-α)cos(-β)-sin(2-α)sin(-β)=sinαcosβ+cosαsinβ……………………………………6分(2)由题意,设△ABC的角B、C的对边分别为b、c则S=12bcsinA=12ABAC=bccosA=3>0∴A∈(0,2),cosA=3sinA又sin2A+cos2A=1,∴sinA=1010,cosA=31010由题意,cosB=35,得sinB=45∴cos(A+B)=cosAcosB-sinAsinB=1010故cosC=cos[π-(A+B)]=-cos(A+B)=-1010…………………………12分(2010天津文数)(17)(本小题满分12分)在ABC中,coscosACBABC。(Ⅰ)证明B=C:(Ⅱ)若cosA=-13,求sin4B3的值。【解析】本小题主要考查正弦定理、两角和与差的正弦、同角三角函数的基本关系、二倍角的正弦与余弦等基础知识,考查基本运算能力.满分12分.(Ⅰ)证明:在△ABC中,由正弦定理及已知得sinBsinC=cosBco
本文标题:高考数学三角函数练习题及答案解析
链接地址:https://www.777doc.com/doc-4247145 .html